Auditory facilitation in deterministic versus stochastic worlds.

IF 2 4区 医学 Q3 NEUROSCIENCES
Berfin Bastug, Urte Roeber, Erich Schröger
{"title":"Auditory facilitation in deterministic versus stochastic worlds.","authors":"Berfin Bastug, Urte Roeber, Erich Schröger","doi":"10.1080/17588928.2025.2497762","DOIUrl":null,"url":null,"abstract":"<p><p>The brain learns statistical regularities in sensory sequences, enhancing behavioral performance for predictable stimuli while impairing behavioral performance for unpredictable stimuli. While previous research has shown that violations of non-informative regularities hinder task performance, it remains unclear whether predictable but task-irrelevant structures can facilitate performance. In a tone duration discrimination task, we manipulated the task-irrelevant pitch dimension by varying transition probabilities (TP) between successive tone frequencies. Participants judged duration, while pitch sequences were either deterministic (a rule-governed pitch pattern, TP = 1) or stochastic (no discernible pitch pattern, TP = 1/number of pitch levels). The tone pitch was task-irrelevant and it did not predict duration. Results showed that reaction times (RTs) were significantly faster for deterministic sequences, suggesting that predictability in a task-irrelevant dimension still facilitates task performance. RTs were also faster in two-tone sequences compared to eight-tone sequences, likely due to reduced memory load. These findings suggest that statistical learning benefits extend beyond task-relevant dimensions, supporting a predictive coding framework in which the brain integrates predictable sensory input to optimize cognitive processing.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"1-7"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2025.2497762","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The brain learns statistical regularities in sensory sequences, enhancing behavioral performance for predictable stimuli while impairing behavioral performance for unpredictable stimuli. While previous research has shown that violations of non-informative regularities hinder task performance, it remains unclear whether predictable but task-irrelevant structures can facilitate performance. In a tone duration discrimination task, we manipulated the task-irrelevant pitch dimension by varying transition probabilities (TP) between successive tone frequencies. Participants judged duration, while pitch sequences were either deterministic (a rule-governed pitch pattern, TP = 1) or stochastic (no discernible pitch pattern, TP = 1/number of pitch levels). The tone pitch was task-irrelevant and it did not predict duration. Results showed that reaction times (RTs) were significantly faster for deterministic sequences, suggesting that predictability in a task-irrelevant dimension still facilitates task performance. RTs were also faster in two-tone sequences compared to eight-tone sequences, likely due to reduced memory load. These findings suggest that statistical learning benefits extend beyond task-relevant dimensions, supporting a predictive coding framework in which the brain integrates predictable sensory input to optimize cognitive processing.

确定性与随机世界中的听觉促进。
大脑在感觉序列中学习统计规律,在可预测的刺激下增强行为表现,而在不可预测的刺激下削弱行为表现。虽然先前的研究表明,违反非信息性规则会阻碍任务绩效,但目前尚不清楚可预测但与任务无关的结构是否能促进绩效。在音时识别任务中,我们通过改变连续音调频率之间的过渡概率来操纵任务无关音高维度。参与者判断持续时间,而音高序列要么是确定性的(规则控制的音高模式,TP = 1),要么是随机的(没有可辨别的音高模式,TP = 1/音高水平的数量)。音调与任务无关,也不能预测持续时间。结果表明,确定性序列的反应时间(RTs)明显更快,这表明在任务无关维度的可预测性仍然有助于任务表现。RTs在双音序列中也比在八音序列中更快,这可能是由于内存负载减少。这些发现表明,统计学习的好处超出了任务相关的维度,支持了一个预测编码框架,在这个框架中,大脑整合了可预测的感觉输入,以优化认知处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neuroscience
Cognitive Neuroscience NEUROSCIENCES-
CiteScore
3.60
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信