Discovery of 2,4,5-Substituted Benzoxazole Derivatives as Pks13 Inhibitors via the Scaffold Hopping Strategy.

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2025-06-13 Epub Date: 2025-05-08 DOI:10.1021/acsinfecdis.4c01054
Babatunde Samuel Obadawo, Priscila Cristina Bartolomeu Halicki, Kindra L Becker, Jessica C Seeliger, Kyle H Rohde, Steven J Sucheck
{"title":"Discovery of 2,4,5-Substituted Benzoxazole Derivatives as Pks13 Inhibitors via the Scaffold Hopping Strategy.","authors":"Babatunde Samuel Obadawo, Priscila Cristina Bartolomeu Halicki, Kindra L Becker, Jessica C Seeliger, Kyle H Rohde, Steven J Sucheck","doi":"10.1021/acsinfecdis.4c01054","DOIUrl":null,"url":null,"abstract":"<p><p>Pks13, an essential enzyme for <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) cell wall biosynthesis, represents a promising target for antimicrobial intervention. Previously, the benzofuran derivative <b>TAM16</b> was identified as a potent inhibitor of Pks13 through interaction with the thioesterase (TE) domain, but its development was halted due to cardiotoxicity. Therefore, we sought to identify an alternative scaffold that demonstrated good whole-cell activity that we demonstrate had a mode of action (MOA) similar to that of TAM16. To achieve this, we employed a scaffold hopping approach, leading to the discovery of a benzoxazole (BZX) scaffold that was determined to target the Pks13 TE domain. We then explored various structure-activity relationship (SAR) studies of the series, which resulted in the identification of a prototype BZX lead. Several of the novel BZX compounds showed potent minimum inhibitory concentrations (MICs) against <i>Mtb</i> and low to no toxicity in cytotoxicity assays. These compounds showed on-target activity, as evidenced by the induction of the BCG <i>iniBAC</i> cell wall damage reporter, inhibition of mycolic acid synthesis, and resistance mutations mapping to the TE domain of Pks13 in <i>Mycobacterium smegmatis</i> (<i>Msm</i>). Overall, we believe that the BZX scaffold represents a new and promising structural class with high potential to advance antitubercular drug discovery.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1460-1472"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c01054","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pks13, an essential enzyme for Mycobacterium tuberculosis (Mtb) cell wall biosynthesis, represents a promising target for antimicrobial intervention. Previously, the benzofuran derivative TAM16 was identified as a potent inhibitor of Pks13 through interaction with the thioesterase (TE) domain, but its development was halted due to cardiotoxicity. Therefore, we sought to identify an alternative scaffold that demonstrated good whole-cell activity that we demonstrate had a mode of action (MOA) similar to that of TAM16. To achieve this, we employed a scaffold hopping approach, leading to the discovery of a benzoxazole (BZX) scaffold that was determined to target the Pks13 TE domain. We then explored various structure-activity relationship (SAR) studies of the series, which resulted in the identification of a prototype BZX lead. Several of the novel BZX compounds showed potent minimum inhibitory concentrations (MICs) against Mtb and low to no toxicity in cytotoxicity assays. These compounds showed on-target activity, as evidenced by the induction of the BCG iniBAC cell wall damage reporter, inhibition of mycolic acid synthesis, and resistance mutations mapping to the TE domain of Pks13 in Mycobacterium smegmatis (Msm). Overall, we believe that the BZX scaffold represents a new and promising structural class with high potential to advance antitubercular drug discovery.

通过支架跳跃策略发现2,4,5-取代苯并恶唑衍生物作为Pks13抑制剂。
Pks13是结核分枝杆菌(Mtb)细胞壁生物合成的必需酶,是抗微生物干预的一个有希望的靶点。此前,苯并呋喃衍生物TAM16通过与硫酯酶(TE)结构域相互作用被鉴定为Pks13的有效抑制剂,但由于心脏毒性而停止了其发展。因此,我们试图确定一种替代支架,该支架具有良好的全细胞活性,我们证明其具有类似于TAM16的作用模式(MOA)。为了实现这一点,我们采用了一种支架跳跃方法,从而发现了一种苯并恶唑(BZX)支架,该支架被确定为靶向Pks13 TE结构域。然后,我们对该系列进行了各种结构-活性关系(SAR)研究,最终确定了BZX铅的原型。几种新型BZX化合物在细胞毒性试验中显示出对Mtb的最低抑制浓度(mic)和低毒性或无毒性。这些化合物显示出靶向活性,如诱导BCG iniBAC细胞壁损伤报告蛋白,抑制霉菌酸合成,以及在耻垢分枝杆菌(Msm)中定位到Pks13 TE结构域的抗性突变。总之,我们相信BZX支架代表了一种新的、有前途的结构类型,具有很大的潜力来推进抗结核药物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信