Qihao Zhang;Jiangwei Liu;Dongyuan Zhai;Min He;Jiwu Lu
{"title":"High-Performance ZrO₂/β-Ga₂O₃ (001) Metal–Insulator–Semiconductor Capacitors","authors":"Qihao Zhang;Jiangwei Liu;Dongyuan Zhai;Min He;Jiwu Lu","doi":"10.1109/TED.2025.3549382","DOIUrl":null,"url":null,"abstract":"In this study, we have fabricated high-performance metalinsulatorsemiconductor (MIS) capacitor using atomic layer-deposited ZrO2/beta-gallium oxide (<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3) (001) heterojunction. The energy band alignment for the ZrO2/<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 heterojunction and electrical properties for the ZrO2/<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 MIS capacitor are investigated. Valence band offset (<inline-formula> <tex-math>$\\Delta {E}_{V}$ </tex-math></inline-formula>) and conduction band offset (<inline-formula> <tex-math>$\\Delta {E}_{C}$ </tex-math></inline-formula>) for the ZrO2/<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 heterojunction, determined by X-ray photoelectron spectroscopy (XPS) technique, are −0.42 and 1.42 eV, respectively. Its band alignment configuration exhibits a type II (staggered gap) structure. Gate leakage current and frequency-dependent capacitancevoltage (C–V) characteristics for the ZrO2/<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 MIS capacitor are investigated. The ZrO2/<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 MIS capacitor demonstrates a low gate leakage current. The PooleFrenkel (PF) conduction model is employed to elucidate the gate leakage current mechanism. No significant frequency dispersion is observed based on the frequency-dependent C–V characteristics. The fixed charge and trapped charge densities in the ZrO2 film are calculated to be <inline-formula> <tex-math>$7.9\\times 10^{{12}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$1.27\\times 10^{{12}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>, respectively. The minimum interface trapped charged density is extracted to be <inline-formula> <tex-math>$4.1\\times 10^{{10}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>$^{-{2}}\\cdot \\text { eV}^{-{1}}$ </tex-math></inline-formula> at an energy of 0.6 eV below the conduction band of <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3, representing the lowest reported value for the dielectric/<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 (001) interface. These results indicate the formation of high-quality ZrO2 film on the <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3, making it a potential candidate as gate dielectrics in <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 power devices.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2207-2212"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10936290/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have fabricated high-performance metalinsulatorsemiconductor (MIS) capacitor using atomic layer-deposited ZrO2/beta-gallium oxide ($\beta $ -Ga2O3) (001) heterojunction. The energy band alignment for the ZrO2/$\beta $ -Ga2O3 heterojunction and electrical properties for the ZrO2/$\beta $ -Ga2O3 MIS capacitor are investigated. Valence band offset ($\Delta {E}_{V}$ ) and conduction band offset ($\Delta {E}_{C}$ ) for the ZrO2/$\beta $ -Ga2O3 heterojunction, determined by X-ray photoelectron spectroscopy (XPS) technique, are −0.42 and 1.42 eV, respectively. Its band alignment configuration exhibits a type II (staggered gap) structure. Gate leakage current and frequency-dependent capacitancevoltage (C–V) characteristics for the ZrO2/$\beta $ -Ga2O3 MIS capacitor are investigated. The ZrO2/$\beta $ -Ga2O3 MIS capacitor demonstrates a low gate leakage current. The PooleFrenkel (PF) conduction model is employed to elucidate the gate leakage current mechanism. No significant frequency dispersion is observed based on the frequency-dependent C–V characteristics. The fixed charge and trapped charge densities in the ZrO2 film are calculated to be $7.9\times 10^{{12}}$ and $1.27\times 10^{{12}}$ cm$^{-{2}}$ , respectively. The minimum interface trapped charged density is extracted to be $4.1\times 10^{{10}}$ cm$^{-{2}}\cdot \text { eV}^{-{1}}$ at an energy of 0.6 eV below the conduction band of $\beta $ -Ga2O3, representing the lowest reported value for the dielectric/$\beta $ -Ga2O3 (001) interface. These results indicate the formation of high-quality ZrO2 film on the $\beta $ -Ga2O3, making it a potential candidate as gate dielectrics in $\beta $ -Ga2O3 power devices.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.