Mikołaj Martyka, Lina Zhang, Fuchun Ge, Yi-Fan Hou, Joanna Jankowska, Mario Barbatti, Pavlo O. Dral
{"title":"Charting electronic-state manifolds across molecules with multi-state learning and gap-driven dynamics via efficient and robust active learning","authors":"Mikołaj Martyka, Lina Zhang, Fuchun Ge, Yi-Fan Hou, Joanna Jankowska, Mario Barbatti, Pavlo O. Dral","doi":"10.1038/s41524-025-01636-z","DOIUrl":null,"url":null,"abstract":"<p>We present a robust protocol for affordable learning of electronic states to accelerate photophysical and photochemical molecular simulations. The protocol solves several issues precluding the widespread use of machine learning (ML) in excited-state simulations. We introduce a novel physics-informed multi-state ML model that can learn an arbitrary number of excited states across molecules, with accuracy better or similar to the accuracy of learning ground-state energies, where information on excited-state energies improves the quality of ground-state predictions. We also present gap-driven dynamics for accelerated sampling of the small-gap regions, which proves crucial for stable surface-hopping dynamics. Together, multi-state learning and gap-driven dynamics enable efficient active learning, furnishing robust models for surface-hopping simulations and helping to uncover long-time-scale oscillations in <i>cis</i>-azobenzene photoisomerization. Our active-learning protocol includes sampling based on physics-informed uncertainty quantification, ensuring the quality of each adiabatic surface, low error in energy gaps, and precise calculation of the hopping probability.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01636-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a robust protocol for affordable learning of electronic states to accelerate photophysical and photochemical molecular simulations. The protocol solves several issues precluding the widespread use of machine learning (ML) in excited-state simulations. We introduce a novel physics-informed multi-state ML model that can learn an arbitrary number of excited states across molecules, with accuracy better or similar to the accuracy of learning ground-state energies, where information on excited-state energies improves the quality of ground-state predictions. We also present gap-driven dynamics for accelerated sampling of the small-gap regions, which proves crucial for stable surface-hopping dynamics. Together, multi-state learning and gap-driven dynamics enable efficient active learning, furnishing robust models for surface-hopping simulations and helping to uncover long-time-scale oscillations in cis-azobenzene photoisomerization. Our active-learning protocol includes sampling based on physics-informed uncertainty quantification, ensuring the quality of each adiabatic surface, low error in energy gaps, and precise calculation of the hopping probability.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.