Rui Han , Wei Wang , Jianhao Liao , Runlin Peng , Liqin Liang , Wenhao Li , Shixuan Feng , Yuanyuan Huang , Lam Mei Fong , Jing Zhou , Xiaobo Li , Yuping Ning , Fengchun Wu , Kai Wu
{"title":"Biological age prediction in schizophrenia using brain MRI, gut microbiome and blood data","authors":"Rui Han , Wei Wang , Jianhao Liao , Runlin Peng , Liqin Liang , Wenhao Li , Shixuan Feng , Yuanyuan Huang , Lam Mei Fong , Jing Zhou , Xiaobo Li , Yuping Ning , Fengchun Wu , Kai Wu","doi":"10.1016/j.brainresbull.2025.111363","DOIUrl":null,"url":null,"abstract":"<div><div>The study of biological age prediction using various biological data has been widely explored. However, single biological data may offer limited insights into the pathological process of aging and diseases. Here we evaluated the performance of machine learning models for biological age prediction by using the integrated features from multi-biological data of 140 healthy controls and 43 patients with schizophrenia, including brain MRI, gut microbiome, and blood data. Our results revealed that the models using multi-biological data achieved higher predictive accuracy than those using only brain MRI. Feature interpretability analysis of the optimal model elucidated that the substantial contributions of the frontal lobe, the temporal lobe and the fornix were effective for biological age prediction. Notably, patients with schizophrenia exhibited a pronounced increase in the predicted biological age gap (BAG) when compared to healthy controls. Moreover, the BAG in the SZ group was negatively and positively correlated with the MCCB and PANSS scores, respectively. These findings underscore the potential of BAG as a valuable biomarker for assessing cognitive decline and symptom severity of neuropsychiatric disorders.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"226 ","pages":"Article 111363"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025001753","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study of biological age prediction using various biological data has been widely explored. However, single biological data may offer limited insights into the pathological process of aging and diseases. Here we evaluated the performance of machine learning models for biological age prediction by using the integrated features from multi-biological data of 140 healthy controls and 43 patients with schizophrenia, including brain MRI, gut microbiome, and blood data. Our results revealed that the models using multi-biological data achieved higher predictive accuracy than those using only brain MRI. Feature interpretability analysis of the optimal model elucidated that the substantial contributions of the frontal lobe, the temporal lobe and the fornix were effective for biological age prediction. Notably, patients with schizophrenia exhibited a pronounced increase in the predicted biological age gap (BAG) when compared to healthy controls. Moreover, the BAG in the SZ group was negatively and positively correlated with the MCCB and PANSS scores, respectively. These findings underscore the potential of BAG as a valuable biomarker for assessing cognitive decline and symptom severity of neuropsychiatric disorders.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.