Xunan Ji , Bingtao Jiang , Ying Chang , Zuqing Lu , Yuanjiang Zhou , Lili Wang , Yanchen Liu , Xiong Zhang , Faping Yi , Mingyuan Tian , Jian Zhou
{"title":"Investigating potential molecular mechanisms of antiepileptic drug-induced depression through network toxicology and molecular docking","authors":"Xunan Ji , Bingtao Jiang , Ying Chang , Zuqing Lu , Yuanjiang Zhou , Lili Wang , Yanchen Liu , Xiong Zhang , Faping Yi , Mingyuan Tian , Jian Zhou","doi":"10.1016/j.neuroscience.2025.05.015","DOIUrl":null,"url":null,"abstract":"<div><div>Antiepileptic drugs (AEDs) are essential for epilepsy management but frequently induce adverse effects including depression. This study employs network toxicology and molecular docking to investigate molecular mechanisms underlying AED-induced depression. After identifying eight AEDs (Topiramate, Zonisamide, Phenobarbital, Primidone, Levetiracetam, Gabapentin, Tiagabine, and Perampanel) potentially associated with depression via a literature review, further analysis integrating drug and disease target databases revealed 25 targets relevant to AED-induced depression. Gene ontology analysis conducted with DAVID, indicated that biological processes including synaptic transmission and plasticity, glutamate receptor signaling, and calcium ion regulation are critical to this phenomenon. KEGG pathway analysis demonstrated that AEDs primarily affect neuroactive ligand-receptor interactions, which are essential for synaptic transmission and plasticity, and disrupt calcium, cAMP, MAPK, and oxytocin signaling pathways. These pathways are vital for the proper functioning of the central nervous system, as neurotransmitter interactions activate crucial signaling pathways. The drug-target interaction network analysis identified 12 candidate targets that directly interact with the eight AEDs, and GeneMANIA network expansion provided deeper insights into their functional associations. Molecular docking results revealed the interactions between AEDs and their respective direct targets, with Zonisamide exhibiting significant potential to induce depression through strong binding to multiple targets. In vitro experiments demonstrated that Zonisamide treatment elevated the expression and activity of MAOA protein in the prefrontal cortex of mice, which may influence monoaminergic neurotransmission through MAO pathway regulation, potentially leading to depression. Collectively, this integrated approach elucidates the mechanisms underlying AED-induced depression, thereby establishing a foundation for future therapeutic strategies.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"577 ","pages":"Pages 25-36"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225003677","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antiepileptic drugs (AEDs) are essential for epilepsy management but frequently induce adverse effects including depression. This study employs network toxicology and molecular docking to investigate molecular mechanisms underlying AED-induced depression. After identifying eight AEDs (Topiramate, Zonisamide, Phenobarbital, Primidone, Levetiracetam, Gabapentin, Tiagabine, and Perampanel) potentially associated with depression via a literature review, further analysis integrating drug and disease target databases revealed 25 targets relevant to AED-induced depression. Gene ontology analysis conducted with DAVID, indicated that biological processes including synaptic transmission and plasticity, glutamate receptor signaling, and calcium ion regulation are critical to this phenomenon. KEGG pathway analysis demonstrated that AEDs primarily affect neuroactive ligand-receptor interactions, which are essential for synaptic transmission and plasticity, and disrupt calcium, cAMP, MAPK, and oxytocin signaling pathways. These pathways are vital for the proper functioning of the central nervous system, as neurotransmitter interactions activate crucial signaling pathways. The drug-target interaction network analysis identified 12 candidate targets that directly interact with the eight AEDs, and GeneMANIA network expansion provided deeper insights into their functional associations. Molecular docking results revealed the interactions between AEDs and their respective direct targets, with Zonisamide exhibiting significant potential to induce depression through strong binding to multiple targets. In vitro experiments demonstrated that Zonisamide treatment elevated the expression and activity of MAOA protein in the prefrontal cortex of mice, which may influence monoaminergic neurotransmission through MAO pathway regulation, potentially leading to depression. Collectively, this integrated approach elucidates the mechanisms underlying AED-induced depression, thereby establishing a foundation for future therapeutic strategies.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.