Exploring the complexity of MECP2 function in Rett syndrome

IF 34.7 1区 医学 Q1 Neuroscience
Yi Liu, Troy W. Whitfield, George W. Bell, Ruisi Guo, Anthony Flamier, Richard A. Young, Rudolf Jaenisch
{"title":"Exploring the complexity of MECP2 function in Rett syndrome","authors":"Yi Liu, Troy W. Whitfield, George W. Bell, Ruisi Guo, Anthony Flamier, Richard A. Young, Rudolf Jaenisch","doi":"10.1038/s41583-025-00926-1","DOIUrl":null,"url":null,"abstract":"<p>Rett syndrome (RTT) is a neurodevelopmental disorder that is mainly caused by mutations in the methyl-DNA-binding protein MECP2. MECP2 is an important epigenetic regulator that plays a pivotal role in neuronal gene regulation, where it has been reported to function as both a repressor and an activator. Despite extensive efforts in mechanistic studies over the past two decades, a clear consensus on how MECP2 dysfunction impacts molecular mechanisms and contributes to disease progression has not been reached. Here, we review recent insights from epigenomic, transcriptomic and proteomic studies that advance our understanding of MECP2 as an interacting hub for DNA, RNA and transcription factors, orchestrating diverse processes that are crucial for neuronal function. By discussing findings from different model systems, we identify crucial epigenetic details and cofactor interactions, enriching our understanding of the multifaceted roles of MECP2 in transcriptional regulation and chromatin structure. These mechanistic insights offer potential avenues for rational therapeutic design for RTT.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"54 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00926-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder that is mainly caused by mutations in the methyl-DNA-binding protein MECP2. MECP2 is an important epigenetic regulator that plays a pivotal role in neuronal gene regulation, where it has been reported to function as both a repressor and an activator. Despite extensive efforts in mechanistic studies over the past two decades, a clear consensus on how MECP2 dysfunction impacts molecular mechanisms and contributes to disease progression has not been reached. Here, we review recent insights from epigenomic, transcriptomic and proteomic studies that advance our understanding of MECP2 as an interacting hub for DNA, RNA and transcription factors, orchestrating diverse processes that are crucial for neuronal function. By discussing findings from different model systems, we identify crucial epigenetic details and cofactor interactions, enriching our understanding of the multifaceted roles of MECP2 in transcriptional regulation and chromatin structure. These mechanistic insights offer potential avenues for rational therapeutic design for RTT.

Abstract Image

探讨Rett综合征MECP2功能的复杂性
Rett综合征(RTT)是一种主要由甲基dna结合蛋白MECP2突变引起的神经发育障碍。MECP2是一种重要的表观遗传调控因子,在神经元基因调控中起着关键作用,据报道它同时具有抑制因子和激活因子的功能。尽管在过去的二十年中进行了大量的机制研究,但关于MECP2功能障碍如何影响分子机制并促进疾病进展尚未达成明确的共识。在这里,我们回顾了最近来自表观基因组学、转录组学和蛋白质组学的研究,这些研究促进了我们对MECP2作为DNA、RNA和转录因子的相互作用中心的理解,这些中心协调了对神经元功能至关重要的多种过程。通过讨论来自不同模型系统的发现,我们确定了关键的表观遗传细节和辅因子相互作用,丰富了我们对MECP2在转录调控和染色质结构中的多方面作用的理解。这些机制的见解为RTT的合理治疗设计提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Neuroscience
Nature Reviews Neuroscience 医学-神经科学
CiteScore
35.00
自引率
0.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信