Wencheng Yang, Song Wang, Di Wu, Taotao Cai, Yanming Zhu, Shicheng Wei, Yiying Zhang, Xu Yang, Zhaohui Tang, Yan Li
{"title":"Deep learning model inversion attacks and defenses: a comprehensive survey","authors":"Wencheng Yang, Song Wang, Di Wu, Taotao Cai, Yanming Zhu, Shicheng Wei, Yiying Zhang, Xu Yang, Zhaohui Tang, Yan Li","doi":"10.1007/s10462-025-11248-0","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid adoption of deep learning in sensitive domains has brought tremendous benefits. However, this widespread adoption has also given rise to serious vulnerabilities, particularly model inversion (MI) attacks, posing a significant threat to the privacy and integrity of personal data. The increasing prevalence of these attacks in applications such as biometrics, healthcare, and finance has created an urgent need to understand their mechanisms, impacts, and defense methods. This survey aims to fill the gap in the literature by providing a structured and in-depth review of MI attacks and defense strategies. Our contributions include a systematic taxonomy of MI attacks, extensive research on attack techniques and defense mechanisms, and a discussion about the challenges and future research directions in this evolving field. By exploring the technical and ethical implications of MI attacks, this survey aims to offer insights into the impact of AI-powered systems on privacy, security, and trust. In conjunction with this survey, we have developed a comprehensive repository to support research on MI attacks and defenses. The repository includes state-of-the-art research papers, datasets, evaluation metrics, and other resources to meet the needs of both novice and experienced researchers interested in MI attacks and defenses, as well as the broader field of AI security and privacy. The repository will be continuously maintained to ensure its relevance and utility. It is accessible at https://github.com/overgter/Deep-Learning-Model-Inversion-Attacks-and-Defenses.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11248-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11248-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid adoption of deep learning in sensitive domains has brought tremendous benefits. However, this widespread adoption has also given rise to serious vulnerabilities, particularly model inversion (MI) attacks, posing a significant threat to the privacy and integrity of personal data. The increasing prevalence of these attacks in applications such as biometrics, healthcare, and finance has created an urgent need to understand their mechanisms, impacts, and defense methods. This survey aims to fill the gap in the literature by providing a structured and in-depth review of MI attacks and defense strategies. Our contributions include a systematic taxonomy of MI attacks, extensive research on attack techniques and defense mechanisms, and a discussion about the challenges and future research directions in this evolving field. By exploring the technical and ethical implications of MI attacks, this survey aims to offer insights into the impact of AI-powered systems on privacy, security, and trust. In conjunction with this survey, we have developed a comprehensive repository to support research on MI attacks and defenses. The repository includes state-of-the-art research papers, datasets, evaluation metrics, and other resources to meet the needs of both novice and experienced researchers interested in MI attacks and defenses, as well as the broader field of AI security and privacy. The repository will be continuously maintained to ensure its relevance and utility. It is accessible at https://github.com/overgter/Deep-Learning-Model-Inversion-Attacks-and-Defenses.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.