Maxima of the Q-index: Forbidden rainbow Hamilton paths, matchings and linear forests

IF 1 3区 数学 Q1 MATHEMATICS
Xinye Zhang , Yongtao Li , Lihua Feng , Weijun Liu
{"title":"Maxima of the Q-index: Forbidden rainbow Hamilton paths, matchings and linear forests","authors":"Xinye Zhang ,&nbsp;Yongtao Li ,&nbsp;Lihua Feng ,&nbsp;Weijun Liu","doi":"10.1016/j.laa.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>A classical result in graph theory, proved by Ore and Bondy independently, states that every graph on <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span> vertices with more than <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> edges contains a path of length <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. Another well-known result due to Erdős and Gallai asserts that for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span>, every <em>n</em>-vertex graph with more than <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>k</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mi>k</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>}</mo></math></span> edges contains a matching of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. In this paper, we establish several spectral analogues for graphs to admit a rainbow substructure. Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> be a collection of (not necessarily distinct) graphs on the same vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> be the spectral radius of the signless Laplacian matrix of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Firstly, we prove that if <span><math><mi>q</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>≥</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span> for every <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, then <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> admit a rainbow Hamilton path, i.e., a Hamilton path whose edges come from different <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s, unless <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≃</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Secondly, we establish a sufficient condition on the signless Laplacian spectral radius of a family of graphs to guarantee a rainbow matching of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. Thirdly, we study the spectral condition on graphs to admit a rainbow linear forests. The main ingredient of our proofs is the shifting techniques with its own interest, involving rainbow Hamilton paths, matchings and linear forests. These results present new examples and illustrations for which the rainbow <em>Q</em>-spectral problems have the adjacency spectral analogues. Finally, some related problems are proposed for further research.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 213-244"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500196X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A classical result in graph theory, proved by Ore and Bondy independently, states that every graph on n5 vertices with more than (n12) edges contains a path of length n1. Another well-known result due to Erdős and Gallai asserts that for k2 and n2k+2, every n-vertex graph with more than max{(2k+12),(k2)+k(nk)} edges contains a matching of size k+1. In this paper, we establish several spectral analogues for graphs to admit a rainbow substructure. Let G1,G2,,Gn1 be a collection of (not necessarily distinct) graphs on the same vertex set {1,2,,n} and q(Gi) be the spectral radius of the signless Laplacian matrix of Gi. Firstly, we prove that if q(Gi)2(n2) for every i[n1], then G1,G2,,Gn1 admit a rainbow Hamilton path, i.e., a Hamilton path whose edges come from different Gi's, unless G1=G2==Gn1 and G1Kn1I1. Secondly, we establish a sufficient condition on the signless Laplacian spectral radius of a family of graphs to guarantee a rainbow matching of size k+1. Thirdly, we study the spectral condition on graphs to admit a rainbow linear forests. The main ingredient of our proofs is the shifting techniques with its own interest, involving rainbow Hamilton paths, matchings and linear forests. These results present new examples and illustrations for which the rainbow Q-spectral problems have the adjacency spectral analogues. Finally, some related problems are proposed for further research.
Q-index的最大值:禁止彩虹汉密尔顿路径,匹配和线性森林
由Ore和Bondy独立证明的图论中的一个经典结果表明,在n≥5个顶点上且边数大于(n−12)的每个图都包含一条长度为n−1的路径。另一个著名的结果是Erdős和Gallai断言,当k≥2和n≥2k+2时,每个n顶点的图,其大于max (2k+12),(k2)+k(n−k)}条边包含一个大小为k+1的匹配。在本文中,我们建立了几个谱的类似图,以承认彩虹子结构。设G1,G2,…,Gn−1是同一顶点集{1,2,…,n}上的图的集合(不一定不同),q(Gi)为Gi的无符号拉普拉斯矩阵的谱半径。首先,我们证明了对于每一个i∈[n−1],如果q(Gi)≥2(n−2),则G1,G2,…,Gn−1承认一条彩虹Hamilton路径,即一条边来自不同Gi的Hamilton路径,除非G1=G2=⋯=Gn−1且G1≠Kn−1∪I1。其次,我们建立了一类图的无符号拉普拉斯谱半径的充分条件,以保证大小为k+1的彩虹匹配。第三,研究了图上允许彩虹线性森林存在的谱条件。我们证明的主要成分是具有自身兴趣的移动技术,涉及彩虹汉密尔顿路径,匹配和线性森林。这些结果为彩虹q光谱问题具有邻接光谱类似物提供了新的例子和说明。最后,提出了有待进一步研究的相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信