Xinye Zhang , Yongtao Li , Lihua Feng , Weijun Liu
{"title":"Maxima of the Q-index: Forbidden rainbow Hamilton paths, matchings and linear forests","authors":"Xinye Zhang , Yongtao Li , Lihua Feng , Weijun Liu","doi":"10.1016/j.laa.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>A classical result in graph theory, proved by Ore and Bondy independently, states that every graph on <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span> vertices with more than <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> edges contains a path of length <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. Another well-known result due to Erdős and Gallai asserts that for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span>, every <em>n</em>-vertex graph with more than <span><math><mi>max</mi><mo></mo><mo>{</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>k</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mi>k</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>}</mo></math></span> edges contains a matching of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. In this paper, we establish several spectral analogues for graphs to admit a rainbow substructure. Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> be a collection of (not necessarily distinct) graphs on the same vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> be the spectral radius of the signless Laplacian matrix of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Firstly, we prove that if <span><math><mi>q</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>≥</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span> for every <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, then <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> admit a rainbow Hamilton path, i.e., a Hamilton path whose edges come from different <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s, unless <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≃</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Secondly, we establish a sufficient condition on the signless Laplacian spectral radius of a family of graphs to guarantee a rainbow matching of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. Thirdly, we study the spectral condition on graphs to admit a rainbow linear forests. The main ingredient of our proofs is the shifting techniques with its own interest, involving rainbow Hamilton paths, matchings and linear forests. These results present new examples and illustrations for which the rainbow <em>Q</em>-spectral problems have the adjacency spectral analogues. Finally, some related problems are proposed for further research.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 213-244"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500196X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A classical result in graph theory, proved by Ore and Bondy independently, states that every graph on vertices with more than edges contains a path of length . Another well-known result due to Erdős and Gallai asserts that for and , every n-vertex graph with more than edges contains a matching of size . In this paper, we establish several spectral analogues for graphs to admit a rainbow substructure. Let be a collection of (not necessarily distinct) graphs on the same vertex set and be the spectral radius of the signless Laplacian matrix of . Firstly, we prove that if for every , then admit a rainbow Hamilton path, i.e., a Hamilton path whose edges come from different 's, unless and . Secondly, we establish a sufficient condition on the signless Laplacian spectral radius of a family of graphs to guarantee a rainbow matching of size . Thirdly, we study the spectral condition on graphs to admit a rainbow linear forests. The main ingredient of our proofs is the shifting techniques with its own interest, involving rainbow Hamilton paths, matchings and linear forests. These results present new examples and illustrations for which the rainbow Q-spectral problems have the adjacency spectral analogues. Finally, some related problems are proposed for further research.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.