Two classes of minimal generic fundamental invariants for tensors

IF 1 3区 数学 Q1 MATHEMATICS
Xin Li , Liping Zhang , Hanchen Xia
{"title":"Two classes of minimal generic fundamental invariants for tensors","authors":"Xin Li ,&nbsp;Liping Zhang ,&nbsp;Hanchen Xia","doi":"10.1016/j.laa.2025.04.028","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the problems raised by Bürgisser and Ikenmeyer in <span><span>[16]</span></span>, we discuss two classes of minimal generic fundamental invariants for tensors of order 3. The first one is defined on <span><math><msup><mrow><mo>⊗</mo></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, where <span><math><mi>m</mi><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></math></span>. We study its construction by obstruction design introduced by Bürgisser and Ikenmeyer, which partially answers one problem raised by them. The second one is defined on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi><mi>m</mi></mrow></msup><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>ℓ</mi></mrow></msup></math></span>. We study its evaluation on the matrix multiplication tensor <span><math><mo>〈</mo><mi>ℓ</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>〉</mo></math></span> and unit tensor <span><math><mo>〈</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></math></span> when <span><math><mi>ℓ</mi><mo>=</mo><mi>m</mi><mo>=</mo><mi>n</mi></math></span>. The evaluation on the unit tensor leads to the definition of Latin cube and 3-dimensional Alon-Tarsi problem. We generalize some results on Latin square to Latin cube, which enrich the understanding of 3-dimensional Alon-Tarsi problem. It is also natural to generalize the constructions to tensors of other orders. We illustrate the distinction between even and odd dimensional generalizations by concrete examples. Finally, some open problems in related fields are raised.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 174-212"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001909","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the problems raised by Bürgisser and Ikenmeyer in [16], we discuss two classes of minimal generic fundamental invariants for tensors of order 3. The first one is defined on 3Cm, where m=n21. We study its construction by obstruction design introduced by Bürgisser and Ikenmeyer, which partially answers one problem raised by them. The second one is defined on CmCmnCn. We study its evaluation on the matrix multiplication tensor ,m,n and unit tensor n2 when =m=n. The evaluation on the unit tensor leads to the definition of Latin cube and 3-dimensional Alon-Tarsi problem. We generalize some results on Latin square to Latin cube, which enrich the understanding of 3-dimensional Alon-Tarsi problem. It is also natural to generalize the constructions to tensors of other orders. We illustrate the distinction between even and odd dimensional generalizations by concrete examples. Finally, some open problems in related fields are raised.
张量的两类最小一般基本不变量
基于b rgisser和Ikenmeyer在2010年提出的问题,我们讨论了3阶张量的两类最小一般基本不变量。第一个定义在⊗3Cm上,其中m=n2−1。本文采用b rgisser和Ikenmeyer引入的障碍物设计来研究其结构,部分回答了他们提出的一个问题。第二个是由Cm m⊗Cmn⊗Cn r定义的。我们研究了当r =m=n时矩阵乘法张量< r,m,n >和单位张量< n2 >的取值。对单位张量的评价导致了拉丁立方体和三维Alon-Tarsi问题的定义。将拉丁方的一些结果推广到拉丁立方,丰富了对三维Alon-Tarsi问题的认识。将构造推广到其他阶张量也是很自然的。我们用具体的例子来说明奇、偶维推广的区别。最后,提出了相关领域有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信