Indefinite determinantal representations versus nonsingularities on the noncommutative d-torus

IF 1 3区 数学 Q1 MATHEMATICS
Gilbert J. Groenewald , Sanne ter Horst , Hugo J. Woerdeman
{"title":"Indefinite determinantal representations versus nonsingularities on the noncommutative d-torus","authors":"Gilbert J. Groenewald ,&nbsp;Sanne ter Horst ,&nbsp;Hugo J. Woerdeman","doi":"10.1016/j.laa.2025.04.024","DOIUrl":null,"url":null,"abstract":"<div><div>We show that for a multivariable polynomial <span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> with a determinantal representation<span><span><span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mn>0</mn><mo>)</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>K</mi><mo>(</mo><msubsup><mrow><mo>⊕</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo><mo>)</mo></math></span></span></span> the matrix <em>K</em> is structurally similar to a strictly <em>J</em>-contractive matrix for some diagonal signature matrix <em>J</em> if and only if the extension of <span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> to a polynomial in <em>d</em>-tuples of matrices of arbitrary size given by<span><span><span><math><mi>p</mi><mo>(</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mn>0</mn><mo>)</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><mo>(</mo><mi>K</mi><mo>⊗</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>(</mo><msubsup><mrow><mo>⊕</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>I</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>⊗</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></msup></math></span>, <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span>, does not have roots on the noncommutative <em>d</em>-torus consisting of <em>d</em>-tuples <span><math><mo>(</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> of unitary matrices of arbitrary size.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 245-255"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001806","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for a multivariable polynomial p(z)=p(z1,,zd) with a determinantal representationp(z)=p(0)det(InK(j=1dzjInj)) the matrix K is structurally similar to a strictly J-contractive matrix for some diagonal signature matrix J if and only if the extension of p(z) to a polynomial in d-tuples of matrices of arbitrary size given byp(U1,,Ud)=p(0)det(InIm(KIm)(j=1dInjUj)), where U1,,UdCm×m, mN, does not have roots on the noncommutative d-torus consisting of d-tuples (U1,,Ud) of unitary matrices of arbitrary size.
非交换d环上的不定行列式表示与非奇异性
我们证明了对于一个多变量多项式p(z)=p(z1,…,zd)具有行列式表示p(z)=p(0)det det (In−K(⊕j=1dzjInj)),矩阵K在结构上类似于某个对角线特征矩阵j的严格j -压缩矩阵,当且仅当p(z)扩展到任意大小矩阵的d元组中的多项式p(U1,…,Ud)=p(0)det det (In⊗Im−(K⊗Im)(⊕j=1dInj⊗Uj)),其中U1,…,Ud∈Cm×m, m∈N,在由任意大小的酉矩阵的d元组(U1,…,Ud)组成的非交换d环面上没有根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信