Gilbert J. Groenewald , Sanne ter Horst , Hugo J. Woerdeman
{"title":"Indefinite determinantal representations versus nonsingularities on the noncommutative d-torus","authors":"Gilbert J. Groenewald , Sanne ter Horst , Hugo J. Woerdeman","doi":"10.1016/j.laa.2025.04.024","DOIUrl":null,"url":null,"abstract":"<div><div>We show that for a multivariable polynomial <span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> with a determinantal representation<span><span><span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mn>0</mn><mo>)</mo><mi>det</mi><mo></mo><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>K</mi><mo>(</mo><msubsup><mrow><mo>⊕</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo><mo>)</mo></math></span></span></span> the matrix <em>K</em> is structurally similar to a strictly <em>J</em>-contractive matrix for some diagonal signature matrix <em>J</em> if and only if the extension of <span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> to a polynomial in <em>d</em>-tuples of matrices of arbitrary size given by<span><span><span><math><mi>p</mi><mo>(</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mn>0</mn><mo>)</mo><mi>det</mi><mo></mo><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><mo>(</mo><mi>K</mi><mo>⊗</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>(</mo><msubsup><mrow><mo>⊕</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>I</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>⊗</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></msup></math></span>, <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span>, does not have roots on the noncommutative <em>d</em>-torus consisting of <em>d</em>-tuples <span><math><mo>(</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> of unitary matrices of arbitrary size.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 245-255"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001806","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that for a multivariable polynomial with a determinantal representation the matrix K is structurally similar to a strictly J-contractive matrix for some diagonal signature matrix J if and only if the extension of to a polynomial in d-tuples of matrices of arbitrary size given by where , , does not have roots on the noncommutative d-torus consisting of d-tuples of unitary matrices of arbitrary size.
我们证明了对于一个多变量多项式p(z)=p(z1,…,zd)具有行列式表示p(z)=p(0)det det (In−K(⊕j=1dzjInj)),矩阵K在结构上类似于某个对角线特征矩阵j的严格j -压缩矩阵,当且仅当p(z)扩展到任意大小矩阵的d元组中的多项式p(U1,…,Ud)=p(0)det det (In⊗Im−(K⊗Im)(⊕j=1dInj⊗Uj)),其中U1,…,Ud∈Cm×m, m∈N,在由任意大小的酉矩阵的d元组(U1,…,Ud)组成的非交换d环面上没有根。
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.