Huanqi Zhang, Xiaozhe Chen, Tingjin Lu, Qiyuan Cao, Xiaojing Li
{"title":"Selenoprotein S ablation-mediated pyroptosis contributes to liver damage resulting from selenium deficiency in chickens","authors":"Huanqi Zhang, Xiaozhe Chen, Tingjin Lu, Qiyuan Cao, Xiaojing Li","doi":"10.1016/j.psj.2025.105269","DOIUrl":null,"url":null,"abstract":"<div><div>Selenium is an essential trace element for the synthesis of selenocysteine. Selenoprotein S (SELS) acts as a carrier protein for selenium and exhibits anti-inflammatory properties. However, the role of the SELS in selenium deficiency remains unclear. This study aimed to investigate the role of SELS in selenium deficiency-mediated pyroptosis. A selenium-deficient chicken model was established using a low-selenium diet, allowing for analysis of the pyroptosis markers GSDMD and NLRP3 by immunohistochemistry and the expression levels of 25 selenoproteins in the liver. The results show that the selenium-deficient diet increased the levels of NLRP3 and GSDMD while reducing the expression of nine selenoproteins (DIO1, GPX1, GPX6, TXRD2, SELF, SELN, SELO, SELS, and SELT). SELS ablation abolished the activities of antioxidant enzymes, leading to excessive production of ROS and MDA. In addition, SELS knockdown activated the NF-κB pathway and induced pyroptosis. Following transfection, the introduction of N-acetylcysteine, BAY11-7082, or MCC950 alleviated the pyroptosis induced by SELS knockdown. However, MCC950 did not affect the NF-κB pathway, and both BAY 11-7082 and MCC950 were ineffective in reducing ROS accumulation. In conclusion, SELS deficiency leads to ROS generation and activation of the NF-κB pathway activation, ultimately inducing pyroptosis and the release of inflammatory factors.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 8","pages":"Article 105269"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125005115","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium is an essential trace element for the synthesis of selenocysteine. Selenoprotein S (SELS) acts as a carrier protein for selenium and exhibits anti-inflammatory properties. However, the role of the SELS in selenium deficiency remains unclear. This study aimed to investigate the role of SELS in selenium deficiency-mediated pyroptosis. A selenium-deficient chicken model was established using a low-selenium diet, allowing for analysis of the pyroptosis markers GSDMD and NLRP3 by immunohistochemistry and the expression levels of 25 selenoproteins in the liver. The results show that the selenium-deficient diet increased the levels of NLRP3 and GSDMD while reducing the expression of nine selenoproteins (DIO1, GPX1, GPX6, TXRD2, SELF, SELN, SELO, SELS, and SELT). SELS ablation abolished the activities of antioxidant enzymes, leading to excessive production of ROS and MDA. In addition, SELS knockdown activated the NF-κB pathway and induced pyroptosis. Following transfection, the introduction of N-acetylcysteine, BAY11-7082, or MCC950 alleviated the pyroptosis induced by SELS knockdown. However, MCC950 did not affect the NF-κB pathway, and both BAY 11-7082 and MCC950 were ineffective in reducing ROS accumulation. In conclusion, SELS deficiency leads to ROS generation and activation of the NF-κB pathway activation, ultimately inducing pyroptosis and the release of inflammatory factors.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.