{"title":"Unlocking the Secrets of Human Milk: Isolation and Characterization of Extracellular Vesicles","authors":"Klaudia Tiszbein, Izabela Koss-Mikołajczyk, Dorota Martysiak-Żurowska","doi":"10.1016/j.advnut.2025.100430","DOIUrl":null,"url":null,"abstract":"<div><div>Extracellular vesicles from human milk (HMEVs) are crucial for neonatal development, immune modulation, and protection against pathogens. However, the lack of standardized isolation and characterization protocols poses significant challenges. This review aims to evaluate and compare various methods for the isolation and characterization of HMEVs, highlighting their effectiveness and potential applications. Preliminary purification steps, including the removal of cells, fat globules, and casein micelles, enhance the purity of isolated HMEVs. We categorized isolation methods into density-based, size-based, and affinity-based techniques. Density-based methods include differential and density gradient ultracentrifugation. Size-based methods encompass polymer precipitation, membrane filtration, electrophoretic filtration, size exclusion chromatography, and microfluidics. Affinity-based methods involve immunoisolation using antibodies specific to HMEV surface proteins. Characterization techniques discussed include flow cytometry, dynamic light scattering, nanoparticle tracking analysis, tunable resistive pulse sensing, electron microscopy, atomic force microscopy, confocal microscopy, western blotting, ELISA, and lateral flow immunoassay systems. Differential ultracentrifugation, considered the “gold standard,” provides high purity but is time-consuming. Density gradient ultracentrifugation offers precise separation. Size-based methods like polyethylene glycol precipitation and membrane filtration are simple and fast. Electrophoretic filtration and microfluidics provide precise control of sample flow. Affinity-based methods are highly specific but costly. Advanced characterization techniques provide comprehensive insights into HMEV properties and functions. Standardizing isolation protocols and employing advanced characterization techniques are essential for advancing HMEV research. Future studies should focus on understanding the molecular mechanisms of HMEVs, exploring the impact of maternal health, and developing targeted delivery technologies. These efforts will enhance the therapeutic potential of HMEVs in neonatal care and contribute to personalized nutritional interventions.</div></div>","PeriodicalId":7349,"journal":{"name":"Advances in Nutrition","volume":"16 6","pages":"Article 100430"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nutrition","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2161831325000663","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles from human milk (HMEVs) are crucial for neonatal development, immune modulation, and protection against pathogens. However, the lack of standardized isolation and characterization protocols poses significant challenges. This review aims to evaluate and compare various methods for the isolation and characterization of HMEVs, highlighting their effectiveness and potential applications. Preliminary purification steps, including the removal of cells, fat globules, and casein micelles, enhance the purity of isolated HMEVs. We categorized isolation methods into density-based, size-based, and affinity-based techniques. Density-based methods include differential and density gradient ultracentrifugation. Size-based methods encompass polymer precipitation, membrane filtration, electrophoretic filtration, size exclusion chromatography, and microfluidics. Affinity-based methods involve immunoisolation using antibodies specific to HMEV surface proteins. Characterization techniques discussed include flow cytometry, dynamic light scattering, nanoparticle tracking analysis, tunable resistive pulse sensing, electron microscopy, atomic force microscopy, confocal microscopy, western blotting, ELISA, and lateral flow immunoassay systems. Differential ultracentrifugation, considered the “gold standard,” provides high purity but is time-consuming. Density gradient ultracentrifugation offers precise separation. Size-based methods like polyethylene glycol precipitation and membrane filtration are simple and fast. Electrophoretic filtration and microfluidics provide precise control of sample flow. Affinity-based methods are highly specific but costly. Advanced characterization techniques provide comprehensive insights into HMEV properties and functions. Standardizing isolation protocols and employing advanced characterization techniques are essential for advancing HMEV research. Future studies should focus on understanding the molecular mechanisms of HMEVs, exploring the impact of maternal health, and developing targeted delivery technologies. These efforts will enhance the therapeutic potential of HMEVs in neonatal care and contribute to personalized nutritional interventions.
期刊介绍:
Advances in Nutrition (AN/Adv Nutr) publishes focused reviews on pivotal findings and recent research across all domains relevant to nutritional scientists and biomedical researchers. This encompasses nutrition-related research spanning biochemical, molecular, and genetic studies using experimental animal models, domestic animals, and human subjects. The journal also emphasizes clinical nutrition, epidemiology and public health, and nutrition education. Review articles concentrate on recent progress rather than broad historical developments.
In addition to review articles, AN includes Perspectives, Letters to the Editor, and supplements. Supplement proposals require pre-approval by the editor before submission. The journal features reports and position papers from the American Society for Nutrition, summaries of major government and foundation reports, and Nutrient Information briefs providing crucial details about dietary requirements, food sources, deficiencies, and other essential nutrient information. All submissions with scientific content undergo peer review by the Editors or their designees prior to acceptance for publication.