Chengqiang Xie, Li Wang, Jiafeng Yang, Jiaying Guo
{"title":"A subject transfer neural network fuses Generator and Euclidean alignment for EEG-based motor imagery classification","authors":"Chengqiang Xie, Li Wang, Jiafeng Yang, Jiaying Guo","doi":"10.1016/j.jneumeth.2025.110483","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Brain-computer interface (BCI) facilitates the connection between human brain and computer, enabling individuals to control external devices indirectly through cognitive processes. Although it has great development prospects, the significant difference in EEG signals among individuals hinders users from further utilizing the BCI system.</div></div><div><h3>New method</h3><div>Addressing this difference and improving BCI classification accuracy remain key challenges. In this paper, we propose a transfer learning model based on deep learning to transfer the data distribution from the source domain to the target domain, named a subject transfer neural network combining the Generator with Euclidean alignment (ST-GENN). It consists of three parts: 1) Align the original EEG signals in the Euclidean space; 2) Send the aligned data to the Generator to obtain the transferred features; 3) Utilize the Convolution-attention-temporal (CAT) classifier to classify the transferred features.</div></div><div><h3>Results</h3><div>The model is validated on BCI competition IV 2a, BCI competition IV 2b and SHU datasets to evaluate its classification performance, and the results are 82.85 %, 86.28 % and 67.2 % for the three datasets, respectively.</div></div><div><h3>Comparison with existing methods</h3><div>The results have been shown to be robust to subject variability, with the average accuracy of the proposed method outperforming baseline algorithms by ranging from 2.03 % to 15.43 % on the 2a dataset, from 0.86 % to 10.16 % on the 2b dataset and from 3.3 % to 17.9 % on the SHU dataset.</div></div><div><h3>Conclusions for research articles</h3><div>The advantage of our model lies in its ability to effectively transfer the experience and knowledge of the source domain data to the target domain, thus bridging the gap between them. Our method can improve the practicability of MI-BCI systems.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"420 ","pages":"Article 110483"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025001244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Brain-computer interface (BCI) facilitates the connection between human brain and computer, enabling individuals to control external devices indirectly through cognitive processes. Although it has great development prospects, the significant difference in EEG signals among individuals hinders users from further utilizing the BCI system.
New method
Addressing this difference and improving BCI classification accuracy remain key challenges. In this paper, we propose a transfer learning model based on deep learning to transfer the data distribution from the source domain to the target domain, named a subject transfer neural network combining the Generator with Euclidean alignment (ST-GENN). It consists of three parts: 1) Align the original EEG signals in the Euclidean space; 2) Send the aligned data to the Generator to obtain the transferred features; 3) Utilize the Convolution-attention-temporal (CAT) classifier to classify the transferred features.
Results
The model is validated on BCI competition IV 2a, BCI competition IV 2b and SHU datasets to evaluate its classification performance, and the results are 82.85 %, 86.28 % and 67.2 % for the three datasets, respectively.
Comparison with existing methods
The results have been shown to be robust to subject variability, with the average accuracy of the proposed method outperforming baseline algorithms by ranging from 2.03 % to 15.43 % on the 2a dataset, from 0.86 % to 10.16 % on the 2b dataset and from 3.3 % to 17.9 % on the SHU dataset.
Conclusions for research articles
The advantage of our model lies in its ability to effectively transfer the experience and knowledge of the source domain data to the target domain, thus bridging the gap between them. Our method can improve the practicability of MI-BCI systems.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.