Dynamic validation of safety integrity level for safety instrumented system considering random/fuzzy uncertainty

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jiao Zhou , Xuewen Cao , Xu Liu , Zeyu Zhang , Jiang Bian
{"title":"Dynamic validation of safety integrity level for safety instrumented system considering random/fuzzy uncertainty","authors":"Jiao Zhou ,&nbsp;Xuewen Cao ,&nbsp;Xu Liu ,&nbsp;Zeyu Zhang ,&nbsp;Jiang Bian","doi":"10.1016/j.measurement.2025.117797","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a dynamic safety integrity level (SIL) validation framework integrating stochastic and fuzzy uncertainty theories to overcome the limitations of conventional static methods. By combining long short-term memory (LSTM) networks for stochastic failure rate prediction and fuzzy support degree (FSD) algorithms for subjective parameter fusion, the methodology enables real-time SIL updates and quantifies parameter impacts through random forest-based feature importance analysis. Two industrial case studies validate the framework’s efficacy: For the n-hexane buffer tank level high-high interlock SIS (Case 1), the total probability of failure on demand (<em>PFD<sub>avg</sub></em>) increased by 1.71× to 2.48 × 10<sup>−3</sup> over three years, with the actuator subsystem exhibiting the fastest-growing <em>PFD<sub>avg</sub></em> (2.78×) and a low safe failure fraction (<em>SFF</em> = 0.4589). In the acrylic purification tank outlet flow low interlock SIS (Case 2), the <em>PFD<sub>avg</sub></em> of the sensor subsystem sharply increased by a factor of 3.31 over a 33-month period, and the SFF dropped to 0.1927. The framework classifies 33 types of parameters into stochastic, fuzzy, and constant types, achieving 18–25 % higher accuracy than single-uncertainty methods. Dynamic monthly updates reveal critical trends, such as solenoid valve <em>λ<sub>SU</sub></em> rising to 2.44 × 10<sup>−8</sup> (Case 1) and valve <em>λ<sub>SD3</sub></em> contributing 76.3 % to <em>PFD<sub>avg</sub></em> growth (Case 2). Feature importance analysis prioritizes high-impact parameters (e.g., <em>λ<sub>DU6</sub></em> in Case 1; <em>λ<sub>SD3</sub></em> in Case 2), guiding targeted maintenance. Both cases confirm SIL compliance, with actuator subsystems identified as reliability bottlenecks. This framework bridges static validation and operational dynamics, offering actionable insights for predictive maintenance and industrial safety intelligence.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117797"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026322412501156X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a dynamic safety integrity level (SIL) validation framework integrating stochastic and fuzzy uncertainty theories to overcome the limitations of conventional static methods. By combining long short-term memory (LSTM) networks for stochastic failure rate prediction and fuzzy support degree (FSD) algorithms for subjective parameter fusion, the methodology enables real-time SIL updates and quantifies parameter impacts through random forest-based feature importance analysis. Two industrial case studies validate the framework’s efficacy: For the n-hexane buffer tank level high-high interlock SIS (Case 1), the total probability of failure on demand (PFDavg) increased by 1.71× to 2.48 × 10−3 over three years, with the actuator subsystem exhibiting the fastest-growing PFDavg (2.78×) and a low safe failure fraction (SFF = 0.4589). In the acrylic purification tank outlet flow low interlock SIS (Case 2), the PFDavg of the sensor subsystem sharply increased by a factor of 3.31 over a 33-month period, and the SFF dropped to 0.1927. The framework classifies 33 types of parameters into stochastic, fuzzy, and constant types, achieving 18–25 % higher accuracy than single-uncertainty methods. Dynamic monthly updates reveal critical trends, such as solenoid valve λSU rising to 2.44 × 10−8 (Case 1) and valve λSD3 contributing 76.3 % to PFDavg growth (Case 2). Feature importance analysis prioritizes high-impact parameters (e.g., λDU6 in Case 1; λSD3 in Case 2), guiding targeted maintenance. Both cases confirm SIL compliance, with actuator subsystems identified as reliability bottlenecks. This framework bridges static validation and operational dynamics, offering actionable insights for predictive maintenance and industrial safety intelligence.
考虑随机/模糊不确定性的安全仪表系统安全完整性水平动态验证
为了克服传统静态方法的局限性,本文提出了一种综合随机和模糊不确定性理论的动态安全完整性水平验证框架。该方法结合了用于随机故障率预测的长短期记忆(LSTM)网络和用于主观参数融合的模糊支持度(FSD)算法,实现了实时SIL更新,并通过基于随机森林的特征重要性分析量化参数影响。两个工业案例研究验证了该框架的有效性:对于正烷缓冲罐级高联锁SIS(案例1),三年内按需故障(PFDavg)的总概率增加了1.71倍,达到2.48 × 10−3,其中执行器子系统显示出增长最快的PFDavg (2.78×)和低安全故障分数(SFF = 0.4589)。在丙烯酸净化罐出口流量低联锁SIS(案例2)中,传感器子系统的PFDavg在33个月的时间内急剧增加了3.31倍,SFF下降到0.1927。该框架将33种类型的参数分为随机、模糊和常量类型,比单一不确定度方法的精度提高18 - 25%。动态月度更新揭示了关键趋势,例如电磁阀λSU上升到2.44 × 10−8(案例1),阀门λSD3对PFDavg增长的贡献为76.3%(案例2)。特征重要性分析优先考虑高影响参数(例如,案例1中的λDU6;λSD3(案例2),指导有针对性的维护。这两种情况都证实了SIL的一致性,执行器子系统被确定为可靠性瓶颈。该框架将静态验证和操作动态连接起来,为预测性维护和工业安全智能提供可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信