{"title":"Modulation in sintering characteristics and microwave dielectric properties of Ca3Co2SiV2O12 via Li+ inequivalent substitution","authors":"Zhenli Tao, Jiamao Li, Junxian Wang, Yuxuan Ren, Yunfeng Guo, Qinghe Yang, Zhihao Yuan, Rui Tian, Wenbo Wang","doi":"10.1016/j.jmat.2025.101074","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the inequivalent substitution of Ca<sup>2+</sup> by Li<sup>+</sup> in the Ca<sub>3</sub>Co<sub>2</sub>SiV<sub>2</sub>O<sub>12</sub> compound was designed to modulate its sintering characteristics and microwave dielectric properties. The corresponding Ca<sub>3–<em>x</em></sub>Li<sub>2<em>x</em></sub>Co<sub>2</sub>SiV<sub>2</sub>O<sub>12</sub> (CCSV-<em>x</em>Li, 0.01≤ <em>x</em> ≤ 0.07) ceramics were prepared <em>via</em> the conventional solid-state phase method, which could be densely sintered at a temperature below 1140 °C. Rietveld refinement results suggested that all the doped Li occupied the Ca-site as <em>x</em> ≤ 0.05 while superfluous Li positioned at the Co-site of CCSV when <em>x</em> = 0.07. This atomic occupancy had a remarkable effect on the degree of “rattling effect” and thus modulated the relative permittivity of ceramics, constantly increasing at <em>x</em> = 0.01–0.05 and slightly decreasing at <em>x</em> = 0.07. Raman spectra revealed that <em>Q</em>×<em>f</em> value was closely related to Raman shift and FWHM. Also, the <em>Q</em>×<em>f</em> value was partly influenced by oxygen vacancy concentration. The <em>τ</em><sub>f</sub> demonstrated an opposite tendency to the bond valence of the A-site and was affected by the “rattling effect”. The CCSV-0.05Li ceramic sintered at 1120 °C possessed excellent microwave dielectric properties: <em>ε</em><sub>r</sub> = 12.17, <em>Q</em>×<em>f</em> = 56,220 GHz, and <em>τ</em><sub>f</sub> = −8.5 × 10<sup>−6</sup> °C<sup>−1</sup>.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 6","pages":"Article 101074"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847825000644","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the inequivalent substitution of Ca2+ by Li+ in the Ca3Co2SiV2O12 compound was designed to modulate its sintering characteristics and microwave dielectric properties. The corresponding Ca3–xLi2xCo2SiV2O12 (CCSV-xLi, 0.01≤ x ≤ 0.07) ceramics were prepared via the conventional solid-state phase method, which could be densely sintered at a temperature below 1140 °C. Rietveld refinement results suggested that all the doped Li occupied the Ca-site as x ≤ 0.05 while superfluous Li positioned at the Co-site of CCSV when x = 0.07. This atomic occupancy had a remarkable effect on the degree of “rattling effect” and thus modulated the relative permittivity of ceramics, constantly increasing at x = 0.01–0.05 and slightly decreasing at x = 0.07. Raman spectra revealed that Q×f value was closely related to Raman shift and FWHM. Also, the Q×f value was partly influenced by oxygen vacancy concentration. The τf demonstrated an opposite tendency to the bond valence of the A-site and was affected by the “rattling effect”. The CCSV-0.05Li ceramic sintered at 1120 °C possessed excellent microwave dielectric properties: εr = 12.17, Q×f = 56,220 GHz, and τf = −8.5 × 10−6 °C−1.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.