Artificial Neural Networks: An Innovative Approach Used for Elucidation of Ionization Processes in Supercritical Fluid Chromatography-Mass Spectrometry
{"title":"Artificial Neural Networks: An Innovative Approach Used for Elucidation of Ionization Processes in Supercritical Fluid Chromatography-Mass Spectrometry","authors":"Kateřina Plachká, Veronika Pilařová, Tat′ána Gazárková, Jean-Christophe Garrigues, František Švec, Lucie Nováková","doi":"10.1021/acs.analchem.5c00152","DOIUrl":null,"url":null,"abstract":"Understanding and predicting mass spectrometry responses in supercritical fluid chromatography-mass spectrometry (SFC-MS) is critical for optimizing detection across diverse analytes and solvent compositions. We present a novel approach using artificial neural networks (ANN) to explore the complex relationships between molecular descriptors of analytes and MS responses in different makeup solvent compositions enabling SFC-MS coupling. 226 molecular descriptors were evaluated for compounds under standardized SFC conditions, with 24 makeup solvent compositions. These makeup solvents included pure alcohols and methanol with varying concentrations of volatile additives. Our results highlight distinct ionization processes for the two most commonly used soft ionization techniques: (i) electrospray ionization (ESI), primarily involving proton or cation transfer, and (ii) atmospheric pressure chemical ionization (APCI), associated with charged ion transfer. Principal component analysis of weights assigned to molecular descriptors reveals that, in positive detection mode, these descriptors effectively differentiate ionization efficiency between ESI and APCI. In contrast, this differentiation is less pronounced in negative mode, where the variance explained is more homogeneously distributed, with stronger discrimination observed when NH<sub>3</sub> is used as an additive to the organic modifier. These findings provide critical insights into the influence of molecular descriptors and solvent composition on ionization efficiency, serving as a foundation for future investigations into SFC-MS optimization. This proof-of-concept underscores the feasibility of using predictive models to advance understanding of ionization efficiency and offers a valuable framework for refining SFC-MS workflows in analytical chemistry.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"105 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00152","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding and predicting mass spectrometry responses in supercritical fluid chromatography-mass spectrometry (SFC-MS) is critical for optimizing detection across diverse analytes and solvent compositions. We present a novel approach using artificial neural networks (ANN) to explore the complex relationships between molecular descriptors of analytes and MS responses in different makeup solvent compositions enabling SFC-MS coupling. 226 molecular descriptors were evaluated for compounds under standardized SFC conditions, with 24 makeup solvent compositions. These makeup solvents included pure alcohols and methanol with varying concentrations of volatile additives. Our results highlight distinct ionization processes for the two most commonly used soft ionization techniques: (i) electrospray ionization (ESI), primarily involving proton or cation transfer, and (ii) atmospheric pressure chemical ionization (APCI), associated with charged ion transfer. Principal component analysis of weights assigned to molecular descriptors reveals that, in positive detection mode, these descriptors effectively differentiate ionization efficiency between ESI and APCI. In contrast, this differentiation is less pronounced in negative mode, where the variance explained is more homogeneously distributed, with stronger discrimination observed when NH3 is used as an additive to the organic modifier. These findings provide critical insights into the influence of molecular descriptors and solvent composition on ionization efficiency, serving as a foundation for future investigations into SFC-MS optimization. This proof-of-concept underscores the feasibility of using predictive models to advance understanding of ionization efficiency and offers a valuable framework for refining SFC-MS workflows in analytical chemistry.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.