Hard, strong, and tough cold-sintered α-quartz composites as high-performance structural ceramics

IF 9.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Peng Yan , Mingming Si , Yongping Liu, Yu Ren, Jie Min, Xu Wang, Qi Ding, Weizhong Jiang, Yuchi Fan, Wan Jiang
{"title":"Hard, strong, and tough cold-sintered α-quartz composites as high-performance structural ceramics","authors":"Peng Yan ,&nbsp;Mingming Si ,&nbsp;Yongping Liu,&nbsp;Yu Ren,&nbsp;Jie Min,&nbsp;Xu Wang,&nbsp;Qi Ding,&nbsp;Weizhong Jiang,&nbsp;Yuchi Fan,&nbsp;Wan Jiang","doi":"10.1016/j.jmat.2025.101076","DOIUrl":null,"url":null,"abstract":"<div><div>Cold-sintered ceramics typically exhibit inferior mechanical properties compared to high-temperature sintered counterparts. We demonstrate that introducing large internal stress through highly concentrated nanodiamonds (NDs) significantly enhances cold-sintered α-quartz composites to structural ceramic levels. At 500 MPa cold-sintering pressure, uniformly dispersed NDs generate 1.2 GPa local prestress <em>via</em> Young's modulus difference, while pressure-modulated internal stress is evidenced by dielectric property changes. The optimized composite achieves fracture toughness of (3.65 ± 0.21) MPa·m<sup>1</sup>/<sup>2</sup> (180% increase) and Vickers hardness of 10.6 GPa (80% increase), matching some high-temperature-sintered ceramics. Toughening arises from prestress-driven crack deflection and crack tip bridging, while hardness enhancement stems from NDs' rigid constraint and high-pressure-induced dislocations in silica matrix. Compressive strength increases by 90% and fatigue life exceeds 1000 cycles, attributed to internal stress-strengthened grain boundaries and improved toughness. This work presents a transformative strategy for developing damage-resistant ceramics, meriting further exploration of scalability and engineering applications.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 6","pages":"Article 101076"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847825000668","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cold-sintered ceramics typically exhibit inferior mechanical properties compared to high-temperature sintered counterparts. We demonstrate that introducing large internal stress through highly concentrated nanodiamonds (NDs) significantly enhances cold-sintered α-quartz composites to structural ceramic levels. At 500 MPa cold-sintering pressure, uniformly dispersed NDs generate 1.2 GPa local prestress via Young's modulus difference, while pressure-modulated internal stress is evidenced by dielectric property changes. The optimized composite achieves fracture toughness of (3.65 ± 0.21) MPa·m1/2 (180% increase) and Vickers hardness of 10.6 GPa (80% increase), matching some high-temperature-sintered ceramics. Toughening arises from prestress-driven crack deflection and crack tip bridging, while hardness enhancement stems from NDs' rigid constraint and high-pressure-induced dislocations in silica matrix. Compressive strength increases by 90% and fatigue life exceeds 1000 cycles, attributed to internal stress-strengthened grain boundaries and improved toughness. This work presents a transformative strategy for developing damage-resistant ceramics, meriting further exploration of scalability and engineering applications.

Abstract Image

Abstract Image

硬、强、韧的α-石英冷烧结复合材料是高性能结构陶瓷
与高温烧结陶瓷相比,冷烧结陶瓷通常表现出较差的机械性能。研究表明,通过高浓度纳米金刚石(NDs)引入大内应力可显著提高冷烧结α-石英复合材料的结构陶瓷水平。在500 MPa冷烧结压力下,均匀分散的NDs通过杨氏模量差产生1.2 GPa的局部预应力,而介电性能的变化则证明了压力调节内应力。优化后的复合材料断裂韧性达到(3.65±0.21)MPa·m1/2(提高180%),维氏硬度达到10.6 GPa(提高80%),与部分高温烧结陶瓷相匹配。增韧来自于预应力驱动的裂纹挠曲和裂纹尖端桥接,而硬度增强来自于NDs的刚性约束和高压诱导的二氧化硅基体位错。抗压强度提高90%,疲劳寿命超过1000次,这是由于内应力增强了晶界,提高了韧性。这项工作为开发抗损伤陶瓷提供了一种变革性的策略,值得进一步探索可扩展性和工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信