Cartesian atomic moment machine learning interatomic potentials

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mingjian Wen, Wei-Fan Huang, Jin Dai, Santosh Adhikari
{"title":"Cartesian atomic moment machine learning interatomic potentials","authors":"Mingjian Wen, Wei-Fan Huang, Jin Dai, Santosh Adhikari","doi":"10.1038/s41524-025-01623-4","DOIUrl":null,"url":null,"abstract":"<p>Machine learning interatomic potentials (MLIPs) have substantially advanced atomistic simulations in materials science and chemistry by balancing accuracy and computational efficiency. While leading MLIPs rely on representing atomic environments using spherical tensors, Cartesian representations offer potential advantages in simplicity and efficiency. Here, we introduce the Cartesian Atomic Moment Potential (CAMP), an approach to building MLIPs entirely in Cartesian space. CAMP constructs atomic moment tensors from neighboring atoms and employs tensor products to incorporate higher body-order interactions, providing a complete description of local atomic environments. Integrated into a graph neural network (GNN) framework, CAMP enables physically motivated, systematically improvable potentials. The model demonstrates excellent performance across diverse systems, including periodic structures, small organic molecules, and two-dimensional materials, achieving accuracy, efficiency, and stability in molecular dynamics simulations that rival or surpass current leading models. CAMP provides a powerful tool for atomistic simulations to accelerate materials understanding and discovery.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"78 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01623-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning interatomic potentials (MLIPs) have substantially advanced atomistic simulations in materials science and chemistry by balancing accuracy and computational efficiency. While leading MLIPs rely on representing atomic environments using spherical tensors, Cartesian representations offer potential advantages in simplicity and efficiency. Here, we introduce the Cartesian Atomic Moment Potential (CAMP), an approach to building MLIPs entirely in Cartesian space. CAMP constructs atomic moment tensors from neighboring atoms and employs tensor products to incorporate higher body-order interactions, providing a complete description of local atomic environments. Integrated into a graph neural network (GNN) framework, CAMP enables physically motivated, systematically improvable potentials. The model demonstrates excellent performance across diverse systems, including periodic structures, small organic molecules, and two-dimensional materials, achieving accuracy, efficiency, and stability in molecular dynamics simulations that rival or surpass current leading models. CAMP provides a powerful tool for atomistic simulations to accelerate materials understanding and discovery.

Abstract Image

笛卡尔原子矩机器学习原子间势
机器学习原子间势(MLIPs)通过平衡精度和计算效率,大大提高了材料科学和化学中的原子模拟。虽然领先的mlip依赖于使用球张量表示原子环境,但笛卡尔表示在简单和高效方面具有潜在的优势。在这里,我们介绍了笛卡尔原子矩势(CAMP),一种完全在笛卡尔空间中构建mlip的方法。CAMP从邻近的原子构建原子矩张量,并使用张量积来合并更高的体阶相互作用,提供了对局部原子环境的完整描述。集成到图神经网络(GNN)框架中,CAMP可以实现物理动机,系统地提高潜力。该模型在不同的系统中表现出优异的性能,包括周期结构、小有机分子和二维材料,在分子动力学模拟中实现了准确性、效率和稳定性,可与当前领先的模型相媲美或超越。CAMP为原子模拟提供了一个强大的工具,以加速材料的理解和发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信