High-Precision GaN-Based-SenseFET Design Based on a Lumped Parameter Electro-Thermal Network Model

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaotian Tang;Qimeng Jiang;Sen Huang;Xinhua Wang;Xinyu Liu
{"title":"High-Precision GaN-Based-SenseFET Design Based on a Lumped Parameter Electro-Thermal Network Model","authors":"Xiaotian Tang;Qimeng Jiang;Sen Huang;Xinhua Wang;Xinyu Liu","doi":"10.1109/JEDS.2025.3563644","DOIUrl":null,"url":null,"abstract":"The lossless and accurate current sensing technology is highly desirable for feedback control, fast over-current protection, and diagnostics-prognostics development for high-frequency and high-efficiency power systems. The SenseFET technology, where a current sensor is monolithically integrated with a power transistor, has been widely used in power ICs due to its high precision and low cost. However, for a gallium nitride (GaN) lateral power device in multi-finger configurations, the non-uniform temperature distribution hinders its application in high-precision scenarios. This paper aims to address this issue through a design method of SenseFETs based on a lumped parameter electro-thermal network (LPETN) model. Based on the proposed model, the time-dependent temperature and conduction current distribution are obtained, and the optimized finger selection for the accurate current sense is performed. The thermal network part of the model is validated by the finite element method (FEM) results, and the electrical part is validated through LTSPICE simulation. Finally, taking a 50-finger GaN high electron mobility transistor (HEMT) device as an example, this model is used to select the fingers of a SenseFET for current sensing. Compared with the traditional method, the proposed approach significantly improves the accuracy of the SenseFET, which demonstrates its effectiveness.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"414-421"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10974612/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The lossless and accurate current sensing technology is highly desirable for feedback control, fast over-current protection, and diagnostics-prognostics development for high-frequency and high-efficiency power systems. The SenseFET technology, where a current sensor is monolithically integrated with a power transistor, has been widely used in power ICs due to its high precision and low cost. However, for a gallium nitride (GaN) lateral power device in multi-finger configurations, the non-uniform temperature distribution hinders its application in high-precision scenarios. This paper aims to address this issue through a design method of SenseFETs based on a lumped parameter electro-thermal network (LPETN) model. Based on the proposed model, the time-dependent temperature and conduction current distribution are obtained, and the optimized finger selection for the accurate current sense is performed. The thermal network part of the model is validated by the finite element method (FEM) results, and the electrical part is validated through LTSPICE simulation. Finally, taking a 50-finger GaN high electron mobility transistor (HEMT) device as an example, this model is used to select the fingers of a SenseFET for current sensing. Compared with the traditional method, the proposed approach significantly improves the accuracy of the SenseFET, which demonstrates its effectiveness.
基于集总参数电热网络模型的高精度gan传感场效应管设计
无损和精确的电流传感技术是高频和高效率电力系统的反馈控制、快速过流保护和诊断预测发展的迫切需要。SenseFET技术将电流传感器与功率晶体管单片集成,由于精度高、成本低,在功率集成电路中得到了广泛的应用。然而,对于多指结构的氮化镓(GaN)横向功率器件,温度分布不均匀阻碍了其在高精度场景中的应用。本文旨在通过基于集总参数电热网络(LPETN)模型的sensefet设计方法来解决这一问题。基于所提出的模型,得到了随时间变化的温度和传导电流分布,并进行了精确电流感应手指的优化选择。模型的热网络部分通过有限元法(FEM)结果进行验证,电气部分通过LTSPICE仿真进行验证。最后,以50指氮化镓高电子迁移率晶体管(HEMT)器件为例,利用该模型对SenseFET的指电流进行了选择。与传统方法相比,该方法显著提高了SenseFET的精度,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信