Glycosylation in neurodevelopment: What oncology teaches?

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Hours Camille , Gressens Pierre
{"title":"Glycosylation in neurodevelopment: What oncology teaches?","authors":"Hours Camille ,&nbsp;Gressens Pierre","doi":"10.1016/j.nbd.2025.106945","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodevelopment is a highly complex process, sensitive to a multitude of signaling pathways linked to molecular processes involved in neuronal development and function, metabolism, and immune functions. Key pathways include cell-cycle regulation (PI3K/Akt/mTOR, p53/PTEN), JAK-STAT, Notch, SLIT/Robo, epithelial-mesenchymal transition (EMT) and cellular homeostasis processes such as apoptosis, autophagy and hypoxia. Transcription regulation (including histone and epigenetic regulation) and immune regulation (NF-kB, Toll-like receptors (TLRs)) play a crucial role. Glycosylation abnormalities related to these molecular processes have been described in cancer. However, while cancer research and therapies have been revolutionized by the study of glycosylation, mechanistic insights and therapeutic approaches are still struggling to develop in neurodevelopmental pathologies. This study is a blueprint to unravel the key pathological pathways in neurodevelopment by highlighting the benefits of studying the associated regulatory processes of glycosylation, which have led to major advances in cancer research.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"211 ","pages":"Article 106945"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125001615","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodevelopment is a highly complex process, sensitive to a multitude of signaling pathways linked to molecular processes involved in neuronal development and function, metabolism, and immune functions. Key pathways include cell-cycle regulation (PI3K/Akt/mTOR, p53/PTEN), JAK-STAT, Notch, SLIT/Robo, epithelial-mesenchymal transition (EMT) and cellular homeostasis processes such as apoptosis, autophagy and hypoxia. Transcription regulation (including histone and epigenetic regulation) and immune regulation (NF-kB, Toll-like receptors (TLRs)) play a crucial role. Glycosylation abnormalities related to these molecular processes have been described in cancer. However, while cancer research and therapies have been revolutionized by the study of glycosylation, mechanistic insights and therapeutic approaches are still struggling to develop in neurodevelopmental pathologies. This study is a blueprint to unravel the key pathological pathways in neurodevelopment by highlighting the benefits of studying the associated regulatory processes of glycosylation, which have led to major advances in cancer research.
神经发育中的糖基化:肿瘤学教授什么?
神经发育是一个高度复杂的过程,对涉及神经元发育和功能、代谢和免疫功能的分子过程相关的大量信号通路敏感。关键通路包括细胞周期调节(PI3K/Akt/mTOR, p53/PTEN), JAK-STAT, Notch, SLIT/Robo,上皮-间质转化(EMT)和细胞稳态过程,如凋亡,自噬和缺氧。转录调控(包括组蛋白和表观遗传调控)和免疫调控(NF-kB、toll样受体(TLRs))起着至关重要的作用。与这些分子过程相关的糖基化异常已在癌症中得到描述。然而,尽管糖基化的研究已经彻底改变了癌症的研究和治疗方法,但神经发育病理学的机制见解和治疗方法仍在努力发展。本研究通过强调研究糖基化相关调控过程的益处,揭示了神经发育的关键病理通路,这导致了癌症研究的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信