Aurélien M. Badina , Kelly Ceyzériat , Quentin Amossé , Alexandre Tresh , Laurene Abjean , Léa Guénat , Emilie Vauthey , Stergios Tsartsalis , Philippe Millet , Benjamin B. Tournier
{"title":"Non-linear microglial, inflammatory and oligodendrocyte dynamics across stages of Alzheimer's disease","authors":"Aurélien M. Badina , Kelly Ceyzériat , Quentin Amossé , Alexandre Tresh , Laurene Abjean , Léa Guénat , Emilie Vauthey , Stergios Tsartsalis , Philippe Millet , Benjamin B. Tournier","doi":"10.1016/j.nbd.2025.106950","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is characterized by cognitive decline and neuropathological hallmarks including Aβ plaques and Tau tangles. Emerging evidence indicates oligodendrocyte (OL) dysfunction and demyelination also contribute to disease progression. Here, we analyzed OL markers and inflammatory gene expression in human hippocampal samples at early and late AD stages. In early AD, we observed OL and myelinating pathways downregulation, alongside microglial and astrocytic activation, as well as upregulated chemokine CCL2 and peripheral immune infiltration markers. In late stages, expression of OL-related genes and myelination pathways increase, with a higher NG2/MBP ratio, coinciding with decreased microglial coverage and peripheral immune markers. These findings indicate that early neuroinflammation may impair OL function, while attenuated immune activity in late AD allows partial OL recovery. This study provides insights into stage-specific inflammatory and myelin-related changes in AD, supporting the relevance of understanding oligodendrocyte dynamics and potential regenerative responses for future therapeutic strategies.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"211 ","pages":"Article 106950"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125001664","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and neuropathological hallmarks including Aβ plaques and Tau tangles. Emerging evidence indicates oligodendrocyte (OL) dysfunction and demyelination also contribute to disease progression. Here, we analyzed OL markers and inflammatory gene expression in human hippocampal samples at early and late AD stages. In early AD, we observed OL and myelinating pathways downregulation, alongside microglial and astrocytic activation, as well as upregulated chemokine CCL2 and peripheral immune infiltration markers. In late stages, expression of OL-related genes and myelination pathways increase, with a higher NG2/MBP ratio, coinciding with decreased microglial coverage and peripheral immune markers. These findings indicate that early neuroinflammation may impair OL function, while attenuated immune activity in late AD allows partial OL recovery. This study provides insights into stage-specific inflammatory and myelin-related changes in AD, supporting the relevance of understanding oligodendrocyte dynamics and potential regenerative responses for future therapeutic strategies.
期刊介绍:
Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.