Baptiste Darracq, Eloi Littner, Manon Brunie, Julia Bos, Pierre Alexandre Kaminski, Florence Depardieu, Weronika Slesak, Kevin Debatisse, Marie Touchon, Aude Bernheim, David Bikard, Frédérique Le Roux, Didier Mazel, Eduardo P. C. Rocha, Céline Loot
{"title":"Sedentary chromosomal integrons as biobanks of bacterial antiphage defense systems","authors":"Baptiste Darracq, Eloi Littner, Manon Brunie, Julia Bos, Pierre Alexandre Kaminski, Florence Depardieu, Weronika Slesak, Kevin Debatisse, Marie Touchon, Aude Bernheim, David Bikard, Frédérique Le Roux, Didier Mazel, Eduardo P. C. Rocha, Céline Loot","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Integrons are genetic systems that drive bacterial adaptation by acquiring, expressing, and shuffling gene cassettes. While mobile integrons are well known for spreading antibiotic resistance genes, the functions of the hundreds of cassettes carried by sedentary integrons remain largely unexplored. We show that many of these cassettes encode small variants of known antiphage systems that favor their inclusion in the integron. We also demonstrate that nearly 10% of the integron cassettes in the pandemic <i>Vibrio cholerae</i> strain encode novel antiphage functions. Most of these novel systems have little or no similarity to previously known ones, with several providing defense through cell lysis or growth arrest. Our work highlights the stabilization and prevalence of small antiphage systems within integrons, making them an untapped biobank of defense mechanisms.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6747","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.ads0768","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Integrons are genetic systems that drive bacterial adaptation by acquiring, expressing, and shuffling gene cassettes. While mobile integrons are well known for spreading antibiotic resistance genes, the functions of the hundreds of cassettes carried by sedentary integrons remain largely unexplored. We show that many of these cassettes encode small variants of known antiphage systems that favor their inclusion in the integron. We also demonstrate that nearly 10% of the integron cassettes in the pandemic Vibrio cholerae strain encode novel antiphage functions. Most of these novel systems have little or no similarity to previously known ones, with several providing defense through cell lysis or growth arrest. Our work highlights the stabilization and prevalence of small antiphage systems within integrons, making them an untapped biobank of defense mechanisms.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.