Xiang Yang , Xinghua Liu , Zhengmao Li , Gaoxi Xiao , Peng Wang
{"title":"Resilience-oriented proactive operation strategy of coupled transportation power systems under exogenous and endogenous uncertainties","authors":"Xiang Yang , Xinghua Liu , Zhengmao Li , Gaoxi Xiao , Peng Wang","doi":"10.1016/j.ress.2025.111161","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a proactive resilience enhancement strategy for power systems under hurricanes, focusing on the coordinated scheduling of coupled transportation power systems (CTPS) with rail-based energy storage transportation (REST). To capture the strong uncertainties of hurricanes on CTPS, a hybrid endogenous and exogenous uncertainty set is developed. In the proposed uncertainty set, the pre-layout and trail accessibility of REST is endogenous, i.e., decision-dependent, and the operating state of transmission lines is exogenous, i.e., decision-independent. An innovative two-stage decision-dependent robust optimization (T-D<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>RO) problem is formulated to enhance the economic feasibility of the CTPS and meet load survivability requirements during hurricane. In particular, we introduce the structure of a mixed-integer programming problem with a maximum-minimum objective, ensuring post-event service protection by jointly optimizing the REST routing, load shedding, and generation curtailment in the worst-case scenario. The T-D<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>RO problem is addressed using a customized parameterized column-and-constraint generation (C&CG) algorithm, leveraging the structural characteristics of this complex problem. Numerical results for the exemplary CTPSs demonstrate that proactive deployment and adaptive routing of REST provide economically viable solutions for achieving grid resilience objectives. Moreover, the customized parameterized C&CG algorithm exhibits superior performance that reduces the computation time compared to nested C&CG, thus enabling efficient emergency response via coordinated network operations.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"262 ","pages":"Article 111161"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095183202500362X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a proactive resilience enhancement strategy for power systems under hurricanes, focusing on the coordinated scheduling of coupled transportation power systems (CTPS) with rail-based energy storage transportation (REST). To capture the strong uncertainties of hurricanes on CTPS, a hybrid endogenous and exogenous uncertainty set is developed. In the proposed uncertainty set, the pre-layout and trail accessibility of REST is endogenous, i.e., decision-dependent, and the operating state of transmission lines is exogenous, i.e., decision-independent. An innovative two-stage decision-dependent robust optimization (T-DRO) problem is formulated to enhance the economic feasibility of the CTPS and meet load survivability requirements during hurricane. In particular, we introduce the structure of a mixed-integer programming problem with a maximum-minimum objective, ensuring post-event service protection by jointly optimizing the REST routing, load shedding, and generation curtailment in the worst-case scenario. The T-DRO problem is addressed using a customized parameterized column-and-constraint generation (C&CG) algorithm, leveraging the structural characteristics of this complex problem. Numerical results for the exemplary CTPSs demonstrate that proactive deployment and adaptive routing of REST provide economically viable solutions for achieving grid resilience objectives. Moreover, the customized parameterized C&CG algorithm exhibits superior performance that reduces the computation time compared to nested C&CG, thus enabling efficient emergency response via coordinated network operations.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.