Research on cell microinjection method based on multi-tasking network

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiangyu Guo , Youchao Zhang , Fanghao Wang , Minxuan Cao , Qingyao Shu , Huanyu Jiang , Alois Knoll , Mingchuan Zhou
{"title":"Research on cell microinjection method based on multi-tasking network","authors":"Xiangyu Guo ,&nbsp;Youchao Zhang ,&nbsp;Fanghao Wang ,&nbsp;Minxuan Cao ,&nbsp;Qingyao Shu ,&nbsp;Huanyu Jiang ,&nbsp;Alois Knoll ,&nbsp;Mingchuan Zhou","doi":"10.1016/j.measurement.2025.117465","DOIUrl":null,"url":null,"abstract":"<div><div>Cell injection is a fundamental technology for cell research with very important applications in biological breeding. The intelligent control of cell deformation is important to improve cell survival rate. In this article, we propose an enhanced robot-assisted cell injection method based on a deep-learning network. An attention-based multi-task perception network (AMP-Net) is proposed for cell segmentation and needle detection in robot-assisted cell injection. Based on the information extracted from the network, three metrics to describe the cell deformation are defined, total cell deformation <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi><mi>D</mi></mrow></msub></math></span>, axial cell deformation <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>C</mi><mi>D</mi></mrow></msub></math></span>, and lateral cell deformation <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>C</mi><mi>D</mi></mrow></msub></math></span>, and the puncture force is estimated by the point contact model. Finally, the cell puncture speed is automatically adjusted based on cell deformation and puncture force. The experimental result shows that the survival rate of the tested cell is 46.67% based on the proposed method, which increases 14.42% compared with the manual injection method.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117465"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125008243","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell injection is a fundamental technology for cell research with very important applications in biological breeding. The intelligent control of cell deformation is important to improve cell survival rate. In this article, we propose an enhanced robot-assisted cell injection method based on a deep-learning network. An attention-based multi-task perception network (AMP-Net) is proposed for cell segmentation and needle detection in robot-assisted cell injection. Based on the information extracted from the network, three metrics to describe the cell deformation are defined, total cell deformation TCD, axial cell deformation ACD, and lateral cell deformation LCD, and the puncture force is estimated by the point contact model. Finally, the cell puncture speed is automatically adjusted based on cell deformation and puncture force. The experimental result shows that the survival rate of the tested cell is 46.67% based on the proposed method, which increases 14.42% compared with the manual injection method.
基于多任务网络的细胞显微注射方法研究
细胞注射是细胞研究的一项基础技术,在生物育种中有着重要的应用。细胞变形的智能控制是提高细胞存活率的重要手段。在本文中,我们提出了一种基于深度学习网络的增强机器人辅助细胞注射方法。提出了一种基于注意力的多任务感知网络(AMP-Net),用于机器人辅助细胞注射中的细胞分割和针头检测。基于网络提取的信息,定义了描述胞体变形的三个指标:胞体总变形TCD、胞体轴向变形ACD和胞体侧向变形LCD,并采用点接触模型估计穿刺力。最后,根据细胞变形和穿刺力自动调整细胞穿刺速度。实验结果表明,基于该方法的被测细胞存活率为46.67%,比手工注射法提高了14.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信