Flora B. Nemeth, Niklas Leopold-Kerschbaumer, Diana Debreceni, Frank Fleischmann, Krisztian Borbely, David Mazurencu-Marinescu-Pele, Thomas Bocklitz, Mihaela Žigman, Kosmas V. Kepesidis
{"title":"Bridging Spectral Gaps: Cross-Device Model Generalization in Blood-Based Infrared Spectroscopy","authors":"Flora B. Nemeth, Niklas Leopold-Kerschbaumer, Diana Debreceni, Frank Fleischmann, Krisztian Borbely, David Mazurencu-Marinescu-Pele, Thomas Bocklitz, Mihaela Žigman, Kosmas V. Kepesidis","doi":"10.1021/acs.analchem.5c00185","DOIUrl":null,"url":null,"abstract":"This paper presents a solution to the challenge of cross-device model generalization in blood-based infrared spectroscopy. As infrared spectroscopy becomes increasingly popular for analyzing human blood, ensuring that machine learning models trained on one device can be effectively transferred to others is essential. However, variations in device characteristics often reduce model performance when applied across different devices. To address this issue, we propose a straightforward domain adaptation method based on data augmentation incorporating device-specific differences. By expanding the training data to include a broader range of nuances, our approach enhances the model’s ability to adapt to the unique characteristics of various devices. We validate the effectiveness of our method through experimental testing on two Fourier-Transform Infrared (FTIR) spectroscopy devices from different research laboratories, demonstrating improved prediction accuracy and reliability.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"23 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00185","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a solution to the challenge of cross-device model generalization in blood-based infrared spectroscopy. As infrared spectroscopy becomes increasingly popular for analyzing human blood, ensuring that machine learning models trained on one device can be effectively transferred to others is essential. However, variations in device characteristics often reduce model performance when applied across different devices. To address this issue, we propose a straightforward domain adaptation method based on data augmentation incorporating device-specific differences. By expanding the training data to include a broader range of nuances, our approach enhances the model’s ability to adapt to the unique characteristics of various devices. We validate the effectiveness of our method through experimental testing on two Fourier-Transform Infrared (FTIR) spectroscopy devices from different research laboratories, demonstrating improved prediction accuracy and reliability.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.