{"title":"Autonomous Tomato Harvesting With Top–Down Fusion Network for Limited Data","authors":"Xingxu Li;Yiheng Han;Nan Ma;Yongjin Liu;Jia Pan;Shun Yang;Siyi Zheng","doi":"10.1109/TRO.2025.3567544","DOIUrl":null,"url":null,"abstract":"Using robots for tomato truss harvesting represents a promising approach to agricultural production. However, incomplete acquisition of perception information and clumsy operations often results in low harvest success rates or crop damage. To addressthis issue, we designed a new method for tomato truss perception, an autonomous harvesting method, and a novel circular rotary cutting end-effector. The robot performs object detection and keypoint detection on tomato trusses using the proposed top–down fusion network, making decisions on suitable targets for harvesting based on phenotyping and pose estimation. The designed end-effector moves gradually from the bottom up to wrap around the tomato truss, cutting the peduncle to complete the harvest. Experiments conducted in real-world scenarios for robotic perception and autonomous harvesting of tomato trusses show that the proposed method increases accuracy by up to 11.42% and 22.29% for complete and limited dataset conditions, compared to baseline models. Furthermore, we have implemented an automatic tomato harvesting system based on TDFNet, which reaches an average harvest success rate of 89.58% in the greenhouse.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3609-3628"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10989552/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using robots for tomato truss harvesting represents a promising approach to agricultural production. However, incomplete acquisition of perception information and clumsy operations often results in low harvest success rates or crop damage. To addressthis issue, we designed a new method for tomato truss perception, an autonomous harvesting method, and a novel circular rotary cutting end-effector. The robot performs object detection and keypoint detection on tomato trusses using the proposed top–down fusion network, making decisions on suitable targets for harvesting based on phenotyping and pose estimation. The designed end-effector moves gradually from the bottom up to wrap around the tomato truss, cutting the peduncle to complete the harvest. Experiments conducted in real-world scenarios for robotic perception and autonomous harvesting of tomato trusses show that the proposed method increases accuracy by up to 11.42% and 22.29% for complete and limited dataset conditions, compared to baseline models. Furthermore, we have implemented an automatic tomato harvesting system based on TDFNet, which reaches an average harvest success rate of 89.58% in the greenhouse.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.