Yujing Chen , Sujuan Sun , Ninglu Gao , Zetai Bai , Wenfei Yu , Bing Zhao , Yan Yun , Xiaohan Sun , Pengfei Lin , Wei Li , Yuying Zhao , Chuanzhu Yan , Shuangwu Liu
{"title":"Proximity extension assay reveals serum inflammatory biomarkers in two amyotrophic lateral sclerosis cohorts","authors":"Yujing Chen , Sujuan Sun , Ninglu Gao , Zetai Bai , Wenfei Yu , Bing Zhao , Yan Yun , Xiaohan Sun , Pengfei Lin , Wei Li , Yuying Zhao , Chuanzhu Yan , Shuangwu Liu","doi":"10.1016/j.nbd.2025.106933","DOIUrl":null,"url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with both clinical and hereditary heterogeneity. Inflammation has been suggested to play an important role in ALS pathophysiology. In this study, we aimed to identify serum inflammatory alterations and develop effective inflammatory biomarkers to assist in the diagnosis of ALS. Through proximity extension assay (PEA), we investigated serum inflammatory alterations in two ALS cohorts compared with healthy controls (HCs), including sporadic ALS patients and genetic ALS patients. We found that CHIT1, OSM, SIRT2, CDCP1 and 5 other factors were significantly increased in sporadic ALS patients in both cohorts and that SIRT2, CDCP1 and 6 other factors were different between genetic ALS patients and HCs. Using XGBoost and binary logistic regression analysis, we developed a two-serum protein diagnostic panel (CHIT1 and CDCP1), and the area under the curve (AUC) was 0.904 in the original cohort and 0.907 in the replication cohort. Based on Mendelian Randomization (MR), OSM and SIRT2 are significantly associated with the risk of ALS. In conclusion, our study revealed a consistent and replicable serum inflammatory profile and developed a biomarker panel that can differentiate ALS patients from HCs in two cohorts, which may play an important role in advancing our current understanding of the inflammatory process and identifying novel therapeutic strategies for ALS patients.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"211 ","pages":"Article 106933"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125001494","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with both clinical and hereditary heterogeneity. Inflammation has been suggested to play an important role in ALS pathophysiology. In this study, we aimed to identify serum inflammatory alterations and develop effective inflammatory biomarkers to assist in the diagnosis of ALS. Through proximity extension assay (PEA), we investigated serum inflammatory alterations in two ALS cohorts compared with healthy controls (HCs), including sporadic ALS patients and genetic ALS patients. We found that CHIT1, OSM, SIRT2, CDCP1 and 5 other factors were significantly increased in sporadic ALS patients in both cohorts and that SIRT2, CDCP1 and 6 other factors were different between genetic ALS patients and HCs. Using XGBoost and binary logistic regression analysis, we developed a two-serum protein diagnostic panel (CHIT1 and CDCP1), and the area under the curve (AUC) was 0.904 in the original cohort and 0.907 in the replication cohort. Based on Mendelian Randomization (MR), OSM and SIRT2 are significantly associated with the risk of ALS. In conclusion, our study revealed a consistent and replicable serum inflammatory profile and developed a biomarker panel that can differentiate ALS patients from HCs in two cohorts, which may play an important role in advancing our current understanding of the inflammatory process and identifying novel therapeutic strategies for ALS patients.
期刊介绍:
Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.