Weiqi Chen, Zhiyue Xu, Kang Wang, Lei Gao, Aisheng Song, Tianbao Ma
{"title":"Transferable machine learning model for multi-target nanoscale simulations in hydrogen-carbon system from crystal to amorphous","authors":"Weiqi Chen, Zhiyue Xu, Kang Wang, Lei Gao, Aisheng Song, Tianbao Ma","doi":"10.1038/s41524-025-01629-y","DOIUrl":null,"url":null,"abstract":"<p>Carbon materials especially with hydrogenation have attracted wide attention for their novel physical and chemical properties and broad application prospects. A systematic theoretical simulation method accurately describing atomic interactions for hydrogen-carbon systems is crucial for the design of carbon-based materials and their industrial applications. Multiphases of hydrogenated carbon materials, from crystal to amorphous, with covalent network and diverse chemical reactions bring huge difficulties to construct a general interatomic potential under various conditions. Here, we demonstrate a transferable active machine learning scheme with separated training of sub-feature spaces and target-oriented finetuning, and construct a general-purpose pre-trained machine learning potential (MLP) for hydrogen-carbon systems. The pre-trained MLP is further efficiently transferred to three target spaces of deposition, friction and fracture with scale reliability. This work provides a robust tool for the theoretical research of hydrogen-carbon systems and a general scheme for developing transferable MLPs in multiphase systems across compositional and conditional complexity.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"93 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01629-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon materials especially with hydrogenation have attracted wide attention for their novel physical and chemical properties and broad application prospects. A systematic theoretical simulation method accurately describing atomic interactions for hydrogen-carbon systems is crucial for the design of carbon-based materials and their industrial applications. Multiphases of hydrogenated carbon materials, from crystal to amorphous, with covalent network and diverse chemical reactions bring huge difficulties to construct a general interatomic potential under various conditions. Here, we demonstrate a transferable active machine learning scheme with separated training of sub-feature spaces and target-oriented finetuning, and construct a general-purpose pre-trained machine learning potential (MLP) for hydrogen-carbon systems. The pre-trained MLP is further efficiently transferred to three target spaces of deposition, friction and fracture with scale reliability. This work provides a robust tool for the theoretical research of hydrogen-carbon systems and a general scheme for developing transferable MLPs in multiphase systems across compositional and conditional complexity.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.