Fei Shuang, Kai Liu, Yucheng Ji, Wei Gao, Luca Laurenti, Poulumi Dey
{"title":"Modeling extensive defects in metals through classical potential-guided sampling and automated configuration reconstruction","authors":"Fei Shuang, Kai Liu, Yucheng Ji, Wei Gao, Luca Laurenti, Poulumi Dey","doi":"10.1038/s41524-025-01599-1","DOIUrl":null,"url":null,"abstract":"<p>Extended defects such as dislocation networks and general grain boundaries are ubiquitous in metals, and accurate modeling these extensive defects is crucial to elucidate their deformation mechanisms. However, existing machine learning interatomic potentials (MLIPs) often fall short in adequately describing these defects, as their large characteristic scales exceed the computational limits of first-principles calculations. To address this challenge, we present a computational framework combining a defect genome constructed via empirical interatomic potential-guided sampling, with an automated reconstruction technique that enables accurate first-principles modeling of general defects by converting atomic clusters into periodic configurations. The effectiveness of this approach was validated through simulations of nanoindentation, tensile deformation, and fracture in BCC tungsten. This framework enhances the modeling accuracy of extended defects in crystalline materials and provides a robust foundation for advancing MLIP development by leveraging defect genomes strategically.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"23 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01599-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extended defects such as dislocation networks and general grain boundaries are ubiquitous in metals, and accurate modeling these extensive defects is crucial to elucidate their deformation mechanisms. However, existing machine learning interatomic potentials (MLIPs) often fall short in adequately describing these defects, as their large characteristic scales exceed the computational limits of first-principles calculations. To address this challenge, we present a computational framework combining a defect genome constructed via empirical interatomic potential-guided sampling, with an automated reconstruction technique that enables accurate first-principles modeling of general defects by converting atomic clusters into periodic configurations. The effectiveness of this approach was validated through simulations of nanoindentation, tensile deformation, and fracture in BCC tungsten. This framework enhances the modeling accuracy of extended defects in crystalline materials and provides a robust foundation for advancing MLIP development by leveraging defect genomes strategically.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.