Verification and validation of zero-point electron-phonon renormalization of the bandgap, mass enhancement, and spectral functions

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Samuel Poncé, Jae-Mo Lihm, Cheol-Hwan Park
{"title":"Verification and validation of zero-point electron-phonon renormalization of the bandgap, mass enhancement, and spectral functions","authors":"Samuel Poncé, Jae-Mo Lihm, Cheol-Hwan Park","doi":"10.1038/s41524-025-01587-5","DOIUrl":null,"url":null,"abstract":"<p>Verification and validation of methods and first-principles software are at the core of computational solid-state physics but are too rarely addressed. We compare four first-principles codes: ABINIT, Quantum ESPRESSO, EPW, ZG, and three methods: (i) the Allen-Heine-Cardona theory using density functional perturbation theory (DFPT), (ii) the Allen-Heine-Cardona theory using Wannier function perturbation theory (WFPT), and (iii) an adiabatic non-perturbative frozen-phonon method. For these cases, we compute the real and imaginary parts of the electron-phonon self-energy in diamond and BAs, including dipoles and quadrupoles when interpolating. We find excellent agreement between software that implements the same formalism as well as good agreement between the DFPT and WFPT methods. Importantly, we find that the Deybe-Waller term is momentum dependent which impacts the mass enhancement, yielding approximate results when using the Luttinger approximations. Finally, we compare the electron-phonon spectral functions between ABINIT and EPW and find excellent agreement even away from the band edges.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"55 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01587-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Verification and validation of methods and first-principles software are at the core of computational solid-state physics but are too rarely addressed. We compare four first-principles codes: ABINIT, Quantum ESPRESSO, EPW, ZG, and three methods: (i) the Allen-Heine-Cardona theory using density functional perturbation theory (DFPT), (ii) the Allen-Heine-Cardona theory using Wannier function perturbation theory (WFPT), and (iii) an adiabatic non-perturbative frozen-phonon method. For these cases, we compute the real and imaginary parts of the electron-phonon self-energy in diamond and BAs, including dipoles and quadrupoles when interpolating. We find excellent agreement between software that implements the same formalism as well as good agreement between the DFPT and WFPT methods. Importantly, we find that the Deybe-Waller term is momentum dependent which impacts the mass enhancement, yielding approximate results when using the Luttinger approximations. Finally, we compare the electron-phonon spectral functions between ABINIT and EPW and find excellent agreement even away from the band edges.

Abstract Image

带隙、质量增强和谱函数的零点电子-声子重整化的验证和验证
方法和第一原理软件的验证和确认是计算固态物理的核心,但很少得到解决。我们比较了四种第一原理代码:ABINIT, Quantum ESPRESSO, EPW, ZG和三种方法:(i)使用密度泛函数微扰理论的Allen-Heine-Cardona理论(DFPT), (ii)使用万尼尔函数微扰理论的Allen-Heine-Cardona理论(WFPT),以及(iii)绝热非微扰冷冻声子方法。对于这些情况,我们计算了金刚石和BAs中电子-声子自能的实部和虚部,包括插值时的偶极子和四极子。我们发现实现相同形式化的软件之间非常一致,DFPT和WFPT方法之间也非常一致。重要的是,我们发现Deybe-Waller项是动量依赖的,它影响质量增强,当使用Luttinger近似时产生近似结果。最后,我们比较了ABINIT和EPW之间的电子-声子谱函数,发现即使在远离带边缘的地方也有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信