{"title":"Adversarial machine learning: a review of methods, tools, and critical industry sectors","authors":"Sotiris Pelekis, Thanos Koutroubas, Afroditi Blika, Anastasis Berdelis, Evangelos Karakolis, Christos Ntanos, Evangelos Spiliotis, Dimitris Askounis","doi":"10.1007/s10462-025-11147-4","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid advancement of Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has produced high-performance models widely used in various applications, ranging from image recognition and chatbots to autonomous driving and smart grid systems. However, security threats arise from the vulnerabilities of ML models to adversarial attacks and data poisoning, posing risks such as system malfunctions and decision errors. Meanwhile, data privacy concerns arise, especially with personal data being used in model training, which can lead to data breaches. This paper surveys the Adversarial Machine Learning (AML) landscape in modern AI systems, while focusing on the dual aspects of robustness and privacy. Initially, we explore adversarial attacks and defenses using comprehensive taxonomies. Subsequently, we investigate robustness benchmarks alongside open-source AML technologies and software tools that ML system stakeholders can use to develop robust AI systems. Lastly, we delve into the landscape of AML in four industry fields –automotive, digital healthcare, electrical power and energy systems (EPES), and Large Language Model (LLM)-based Natural Language Processing (NLP) systems– analyzing attacks, defenses, and evaluation concepts, thereby offering a holistic view of the modern AI-reliant industry and promoting enhanced ML robustness and privacy preservation in the future.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11147-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11147-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has produced high-performance models widely used in various applications, ranging from image recognition and chatbots to autonomous driving and smart grid systems. However, security threats arise from the vulnerabilities of ML models to adversarial attacks and data poisoning, posing risks such as system malfunctions and decision errors. Meanwhile, data privacy concerns arise, especially with personal data being used in model training, which can lead to data breaches. This paper surveys the Adversarial Machine Learning (AML) landscape in modern AI systems, while focusing on the dual aspects of robustness and privacy. Initially, we explore adversarial attacks and defenses using comprehensive taxonomies. Subsequently, we investigate robustness benchmarks alongside open-source AML technologies and software tools that ML system stakeholders can use to develop robust AI systems. Lastly, we delve into the landscape of AML in four industry fields –automotive, digital healthcare, electrical power and energy systems (EPES), and Large Language Model (LLM)-based Natural Language Processing (NLP) systems– analyzing attacks, defenses, and evaluation concepts, thereby offering a holistic view of the modern AI-reliant industry and promoting enhanced ML robustness and privacy preservation in the future.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.