Soft voting ensemble classifier for liquefaction prediction based on SPT data

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pravallika Chithuloori, Jin-Man Kim
{"title":"Soft voting ensemble classifier for liquefaction prediction based on SPT data","authors":"Pravallika Chithuloori,&nbsp;Jin-Man Kim","doi":"10.1007/s10462-025-11230-w","DOIUrl":null,"url":null,"abstract":"<div><p>Soil liquefaction, caused by increased porewater pressure, is a significant risk in seismically active areas, impacting infrastructure stability and challenging liquefaction forecasting due to intricate nonlinear interactions. This study proposes a soft voting ensemble classifier (SVEC) that integrates CatBoost Classifier (CBC), Random Forest Classifier (RFC), and Gradient Boost Classifiers (GBC) to predict liquefaction using Standard Penetration Test (SPT) data. The dataset of 540 soil and seismic parameters was utilized to develop SVCE. The dataset incorporates depth, SPT-N60 values, Fine Content of soils (FC), Ground Water Table (GWT), Effective Stresses of Overburden (ESO), Total Stresses of Overburden (TSO), Earthquake magnitude (M<sub>w</sub>), and Peak Ground Acceleration (PGA), as input factors for liquefaction prediction. The proposed model was evaluated through performance metrics (Accuracy, Recall, Precision, and F1-score), confusion matrix, sensitivity analysis, feature importance, and Shapley additive explanation (SHAP) analysis. SHAP improves the reliability of ensemble techniques in liquefaction analysis by highlighting the most critical input features, such as PGA, SPT-N60, FC, and GWT. tenfold cross-validation and precision-recall curve confirms the SVEC model’s robustness, achieving a high accuracy of 99.38% in accurately predicting liquefaction.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11230-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11230-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil liquefaction, caused by increased porewater pressure, is a significant risk in seismically active areas, impacting infrastructure stability and challenging liquefaction forecasting due to intricate nonlinear interactions. This study proposes a soft voting ensemble classifier (SVEC) that integrates CatBoost Classifier (CBC), Random Forest Classifier (RFC), and Gradient Boost Classifiers (GBC) to predict liquefaction using Standard Penetration Test (SPT) data. The dataset of 540 soil and seismic parameters was utilized to develop SVCE. The dataset incorporates depth, SPT-N60 values, Fine Content of soils (FC), Ground Water Table (GWT), Effective Stresses of Overburden (ESO), Total Stresses of Overburden (TSO), Earthquake magnitude (Mw), and Peak Ground Acceleration (PGA), as input factors for liquefaction prediction. The proposed model was evaluated through performance metrics (Accuracy, Recall, Precision, and F1-score), confusion matrix, sensitivity analysis, feature importance, and Shapley additive explanation (SHAP) analysis. SHAP improves the reliability of ensemble techniques in liquefaction analysis by highlighting the most critical input features, such as PGA, SPT-N60, FC, and GWT. tenfold cross-validation and precision-recall curve confirms the SVEC model’s robustness, achieving a high accuracy of 99.38% in accurately predicting liquefaction.

基于SPT数据的液化预测软投票集成分类器
孔隙水压力增加导致的土壤液化是地震活跃地区的重大风险,由于复杂的非线性相互作用,影响基础设施的稳定性,并给液化预测带来挑战。本研究提出了一种软投票集成分类器(SVEC),该分类器集成了CatBoost分类器(CBC)、随机森林分类器(RFC)和梯度提升分类器(GBC),使用标准渗透测试(SPT)数据预测液化。利用540个土壤和地震参数数据集开发SVCE。该数据集将深度、SPT-N60值、土壤细粒含量(FC)、地下水位(GWT)、覆盖层有效应力(ESO)、覆盖层总应力(TSO)、地震震级(Mw)和峰值地面加速度(PGA)作为液化预测的输入因子。通过性能指标(准确率、召回率、精密度和f1分数)、混淆矩阵、敏感性分析、特征重要性和Shapley加性解释(SHAP)分析来评估所提出的模型。SHAP通过突出显示最关键的输入特征,如PGA、SPT-N60、FC和GWT,提高了液化分析中集成技术的可靠性。十倍交叉验证和精确召回曲线证实了SVEC模型的稳健性,在准确预测液化方面达到99.38%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信