Amos Bardea , Fernando Patolsky , Roshlin Kiruba , Igor Lapsker , Paul Ben Ishai
{"title":"Flexible organic semiconductor switching enabled by the magnetoresistance effect","authors":"Amos Bardea , Fernando Patolsky , Roshlin Kiruba , Igor Lapsker , Paul Ben Ishai","doi":"10.1016/j.mssp.2025.109610","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in material sciences have placed significant emphasis on the development of materials with smart properties and functionalities, that can be controlled or adjusted by external stimuli. We present a study of polydimethylsiloxane/polypyrrole/Ni nanoparticle composites as testbeds for Organic Magnetoresistance (OMAR) application. The magnetoresistance sensitivity, (ΔR/R<sub>0</sub>), of flexible organic composites at room temperature typically falls below one, for millitesla-scale magnetic fields. Our experiments demonstrate that the fabricated films exhibit a notable magnetoresistance effect, with relative electrical resistance changes of 5.2, under a weak magnetic field of 10<sup>−2</sup> T under ambient conditions. We show that these composite films are flexible, conductive, and exhibit heighted OMAR capabilities, with switching rates stable up to 5 kHz. The magnetic permeability of the samples is investigated using a bespoke time-domain magnetic spectrometer, revealing enhanced diamagnetic behavior. This underpins the magnetic resistance of the composite, because of spin injection and consequent interaction with the magnetic field. This study introduces the first example of a single flexible film structure capable of detecting weak magnetic fields, as low as 10<sup>−2</sup> T at room temperature, surpassing previously reported MR values below one in the literature. These promising organomagnetic self-standing films hold significant potential for various future applications, including magnetic switches, sensors, e-skin devices, transistors, and organic spintronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"195 ","pages":"Article 109610"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125003476","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in material sciences have placed significant emphasis on the development of materials with smart properties and functionalities, that can be controlled or adjusted by external stimuli. We present a study of polydimethylsiloxane/polypyrrole/Ni nanoparticle composites as testbeds for Organic Magnetoresistance (OMAR) application. The magnetoresistance sensitivity, (ΔR/R0), of flexible organic composites at room temperature typically falls below one, for millitesla-scale magnetic fields. Our experiments demonstrate that the fabricated films exhibit a notable magnetoresistance effect, with relative electrical resistance changes of 5.2, under a weak magnetic field of 10−2 T under ambient conditions. We show that these composite films are flexible, conductive, and exhibit heighted OMAR capabilities, with switching rates stable up to 5 kHz. The magnetic permeability of the samples is investigated using a bespoke time-domain magnetic spectrometer, revealing enhanced diamagnetic behavior. This underpins the magnetic resistance of the composite, because of spin injection and consequent interaction with the magnetic field. This study introduces the first example of a single flexible film structure capable of detecting weak magnetic fields, as low as 10−2 T at room temperature, surpassing previously reported MR values below one in the literature. These promising organomagnetic self-standing films hold significant potential for various future applications, including magnetic switches, sensors, e-skin devices, transistors, and organic spintronic devices.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.