Holly E. Lovegrove, Georgia E. Hulmes, Sabrina Ghadaouia, Christopher Revell, Marta Giralt-Pujol, Zain Alhashem, Andreia Pena, Damian D. Nogare, Ellen Appleton, Guilherme Costa, Richard L. Mort, Christoph Ballestrem, Gareth W. Jones, Cerys S. Manning, Ajay B. Chitnis, Claudio A. Franco, Claudia Linker, Katie Bentley, Shane P. Herbert
{"title":"Interphase cell morphology defines the mode, symmetry, and outcome of mitosis","authors":"Holly E. Lovegrove, Georgia E. Hulmes, Sabrina Ghadaouia, Christopher Revell, Marta Giralt-Pujol, Zain Alhashem, Andreia Pena, Damian D. Nogare, Ellen Appleton, Guilherme Costa, Richard L. Mort, Christoph Ballestrem, Gareth W. Jones, Cerys S. Manning, Ajay B. Chitnis, Claudio A. Franco, Claudia Linker, Katie Bentley, Shane P. Herbert","doi":"","DOIUrl":null,"url":null,"abstract":"<div >During tissue formation, dynamic cell shape changes drive morphogenesis while asymmetric divisions create cellular diversity. We found that the shifts in cell morphology that shape tissues could concomitantly act as conserved instructive cues that trigger asymmetric division and direct core identity decisions underpinning tissue building. We performed single-cell morphometric analyses of endothelial and other mesenchymal-like cells. Distinct morphological changes switched cells to an “isomorphic” mode of division, which preserved pre-mitotic morphology throughout mitosis. In isomorphic divisions, interphase morphology appeared to provide a geometric code defining mitotic symmetry, fate determinant partitioning, and daughter state. Rab4-positive endosomes recognized this code, allowing them to respond to pre-mitotic morphology and segregate determinants accordingly. Thus, morphogenetic shape change sculpts tissue form while also generating cellular heterogeneity, thereby driving tissue assembly.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6746","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adu9628","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During tissue formation, dynamic cell shape changes drive morphogenesis while asymmetric divisions create cellular diversity. We found that the shifts in cell morphology that shape tissues could concomitantly act as conserved instructive cues that trigger asymmetric division and direct core identity decisions underpinning tissue building. We performed single-cell morphometric analyses of endothelial and other mesenchymal-like cells. Distinct morphological changes switched cells to an “isomorphic” mode of division, which preserved pre-mitotic morphology throughout mitosis. In isomorphic divisions, interphase morphology appeared to provide a geometric code defining mitotic symmetry, fate determinant partitioning, and daughter state. Rab4-positive endosomes recognized this code, allowing them to respond to pre-mitotic morphology and segregate determinants accordingly. Thus, morphogenetic shape change sculpts tissue form while also generating cellular heterogeneity, thereby driving tissue assembly.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.