Manufacturing of g-C3N4-ZnS-Doped TiO2 Nanofibers by Electrospinning and Their Application to Dye-Sensitized Solar Cell as an Additional Layer in Photoanode
IF 2.3 3区 工程技术Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Manufacturing of g-C3N4-ZnS-Doped TiO2 Nanofibers by Electrospinning and Their Application to Dye-Sensitized Solar Cell as an Additional Layer in Photoanode","authors":"Yu-Hsun Nien;Jhih-Wei Zeng;Yu-Han Huang;Jung-Chuan Chou;Chih-Hsien Lai;Po-Yu Kuo;Po-Hui Yang;Yu-Wei Chen;Wen-Hao Chen","doi":"10.1109/TSM.2025.3550570","DOIUrl":null,"url":null,"abstract":"This study aims to enhance photovoltaic performance of dye-sensitized solar cells (DSSCs) by modification of photoanode with nanofibers (NFs) as an additional layer. g-C3N4 and ZnS (CN-ZnS) were selected for the modification of TiO2 nanofibers. The g-C3N4 was synthesized using a calcination method, while the CN-ZnS was successfully prepared through a simple hydrothermal method. Subsequently, CN-ZnS/TiO2 NFs with different mixing ratios were fabricated using electrospinning technology. The synthesized material was characterized by X-ray diffraction and scanning electron microscopy. The positive impact of incorporating the additional layer on the photovoltaic performance of DSSCs was confirmed through electrochemical impedance spectroscopy, UV-vis spectroscopy, J-V characterization, and incident photon-to-current efficiency measurements. Notably, the DSSC modified with 1% CN-ZnS/TiO2 NFs achieves an efficiency of 5.44%, and it reaches an efficiency of 7.04% under low illumination (30 mW/cm2). These results suggest that CN-ZnS/TiO2 NFs are promising for enhancing the performance of DSSCs.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 2","pages":"332-342"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10924283/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to enhance photovoltaic performance of dye-sensitized solar cells (DSSCs) by modification of photoanode with nanofibers (NFs) as an additional layer. g-C3N4 and ZnS (CN-ZnS) were selected for the modification of TiO2 nanofibers. The g-C3N4 was synthesized using a calcination method, while the CN-ZnS was successfully prepared through a simple hydrothermal method. Subsequently, CN-ZnS/TiO2 NFs with different mixing ratios were fabricated using electrospinning technology. The synthesized material was characterized by X-ray diffraction and scanning electron microscopy. The positive impact of incorporating the additional layer on the photovoltaic performance of DSSCs was confirmed through electrochemical impedance spectroscopy, UV-vis spectroscopy, J-V characterization, and incident photon-to-current efficiency measurements. Notably, the DSSC modified with 1% CN-ZnS/TiO2 NFs achieves an efficiency of 5.44%, and it reaches an efficiency of 7.04% under low illumination (30 mW/cm2). These results suggest that CN-ZnS/TiO2 NFs are promising for enhancing the performance of DSSCs.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.