{"title":">3kV NiO/Ga2O3 Heterojunction Diodes With Space-Modulated Junction Termination Extension and Sub-1V Turn-On","authors":"Advait Gilankar;Abishek Katta;Nabasindhu Das;Nidhin Kurian Kalarickal","doi":"10.1109/JEDS.2025.3562028","DOIUrl":null,"url":null,"abstract":"This work demonstrates high-performance vertical NiO/Ga2O3 heterojunction diodes (HJDs) with a 2-step space-modulated junction termination extension. Distinct from the current state-of-the-art Ga2O3 HJDs, we achieve breakdown voltage exceeding 3 kV with a low turn on voltage (VON) of 0.8V, estimated at a forward current density (IF) of 1 <inline-formula> <tex-math>$A-cm^{\\text {-2}}$ </tex-math></inline-formula>. The measured devices exhibit excellent turn-on characteristics achieving 100 <inline-formula> <tex-math>$A-cm^{\\text {-2}}$ </tex-math></inline-formula> current density at a forward bias of 1.5V along with a low differential specific on-resistance (Ron,sp) of 4.4 m<inline-formula> <tex-math>$\\Omega $ </tex-math></inline-formula>-cm2. The SM-JTE was realized using concentric NiO rings with varying widths and spacing that approximates a gradual reduction in JTE charge. The unipolar figure of merit (FOM) calculated exceeds 2 GW-cm2 and is among the best reported for devices with a sub-1V turn-on. The fabricated devices also displayed minimal change in forward I-V characteristics post reverse bias stress of 3 kV applied during breakdown voltage testing.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"373-377"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10967383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10967383/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrates high-performance vertical NiO/Ga2O3 heterojunction diodes (HJDs) with a 2-step space-modulated junction termination extension. Distinct from the current state-of-the-art Ga2O3 HJDs, we achieve breakdown voltage exceeding 3 kV with a low turn on voltage (VON) of 0.8V, estimated at a forward current density (IF) of 1 $A-cm^{\text {-2}}$ . The measured devices exhibit excellent turn-on characteristics achieving 100 $A-cm^{\text {-2}}$ current density at a forward bias of 1.5V along with a low differential specific on-resistance (Ron,sp) of 4.4 m$\Omega $ -cm2. The SM-JTE was realized using concentric NiO rings with varying widths and spacing that approximates a gradual reduction in JTE charge. The unipolar figure of merit (FOM) calculated exceeds 2 GW-cm2 and is among the best reported for devices with a sub-1V turn-on. The fabricated devices also displayed minimal change in forward I-V characteristics post reverse bias stress of 3 kV applied during breakdown voltage testing.
这项工作展示了高性能的垂直NiO/Ga2O3异质结二极管(HJDs),具有两步空间调制结终端扩展。与目前最先进的Ga2O3 HJDs不同,我们以0.8V的低导通电压(VON)实现了超过3kv的击穿电压,估计正向电流密度(IF)为1 $ a -cm^{\text{-2}}$。所测器件具有优异的导通特性,在正向偏置1.5V下实现100 $ a -cm^{\text{-2}}$电流密度,并具有4.4 m $\Omega $ -cm2的低差分比导通电阻(Ron,sp)。SM-JTE采用不同宽度和间距的同心NiO环来实现,近似于逐渐减少JTE电荷。计算出的单极性能值(FOM)超过2 GW-cm2,是具有sub-1V导通的器件的最佳报告之一。在击穿电压测试中施加3kv反向偏置应力后,制备的器件也显示出最小的正向I-V特性变化。
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.