Kaipu Wang, Wujun Shi, Weizheng Cao, Xiaotian Yang, Zhengyang Lv, Cheng Peng, Cheng Chen, Defa Liu, Haifeng Yang, Lexian Yang, Meng Lyu, Peijie Sun, Enke Liu, Mao Ye, Yulin Chen, Yan Sun, Yanpeng Qi, Zhongkai Liu
{"title":"Weyl Fermion Manipulation Through Magnetic Transitions in the Ferromagnetic Non‐Centrosymmetric Weyl Semimetal PrAlSi","authors":"Kaipu Wang, Wujun Shi, Weizheng Cao, Xiaotian Yang, Zhengyang Lv, Cheng Peng, Cheng Chen, Defa Liu, Haifeng Yang, Lexian Yang, Meng Lyu, Peijie Sun, Enke Liu, Mao Ye, Yulin Chen, Yan Sun, Yanpeng Qi, Zhongkai Liu","doi":"10.1002/aelm.202500044","DOIUrl":null,"url":null,"abstract":"PrAlSi, a non‐centrosymmetric ferromagnetic Weyl semimetal candidate with a Curie temperature of 17.8K, offers a unique platform for exploring the interplay of symmetry breaking and topological electronic structures. Up to now, the Weyl fermion distribution as well as their evolution across the ferromagnetic to paramagnetic phase transition in PrAlSi has not been explored. Here, the presence of Weyl fermions is uncovered in PrAlSi and demonstrates that they can be manipulated through the magnetic phase transition. The ab‐initio calculations indicate a shift in the momentum and energy positions of Weyl fermions, alongside an increase in Weyl point numbers due to band splitting. The predicted band splitting and shifting of Weyl fermions are corroborated by the angle‐resolved photoemission spectroscopy experiments. Such manipulation of Weyl fermions leads to the appearance of a net chirality charge and a significant modulation in optical conductivity, as proposed by the calculations. The research presents a novel method for adjusting the properties of Weyl semimetals by controlling Weyl fermions through magnetic phase transitions, positioning PrAlSi as a model system.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"24 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500044","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PrAlSi, a non‐centrosymmetric ferromagnetic Weyl semimetal candidate with a Curie temperature of 17.8K, offers a unique platform for exploring the interplay of symmetry breaking and topological electronic structures. Up to now, the Weyl fermion distribution as well as their evolution across the ferromagnetic to paramagnetic phase transition in PrAlSi has not been explored. Here, the presence of Weyl fermions is uncovered in PrAlSi and demonstrates that they can be manipulated through the magnetic phase transition. The ab‐initio calculations indicate a shift in the momentum and energy positions of Weyl fermions, alongside an increase in Weyl point numbers due to band splitting. The predicted band splitting and shifting of Weyl fermions are corroborated by the angle‐resolved photoemission spectroscopy experiments. Such manipulation of Weyl fermions leads to the appearance of a net chirality charge and a significant modulation in optical conductivity, as proposed by the calculations. The research presents a novel method for adjusting the properties of Weyl semimetals by controlling Weyl fermions through magnetic phase transitions, positioning PrAlSi as a model system.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.