Robust Field-Free Voltage-Gated Spin-Orbit Torque Switching in IrMn-Based Perpendicular Magnetic Tunnel Junctions

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhaochun Liu;Shouzhong Peng;Weixiang Li;Jiahao Liu;Jiaqi Lu;Shiyang Lu;Danrong Xiong;Kaihua Cao;Weisheng Zhao
{"title":"Robust Field-Free Voltage-Gated Spin-Orbit Torque Switching in IrMn-Based Perpendicular Magnetic Tunnel Junctions","authors":"Zhaochun Liu;Shouzhong Peng;Weixiang Li;Jiahao Liu;Jiaqi Lu;Shiyang Lu;Danrong Xiong;Kaihua Cao;Weisheng Zhao","doi":"10.1109/LED.2025.3554698","DOIUrl":null,"url":null,"abstract":"Spin-orbit torque (SOT) magnetic random-access memory (MRAM) is a promising candidate for next-generation memory technologies due to its non-volatility, high speed, and low power consumption. In this letter, we experimentally demonstrate SOT switching in 80 nm IrMn-based perpendicular magnetic tunnel junctions with a pulse width down to 0.8 ns. Field-free SOT switching is achieved with the assistance of the in-plane exchange bias (EB) generated at the antiferromagnetic/ferromagnetic interface. Remarkably, after <inline-formula> <tex-math>$1\\times 10^{{10} }$ </tex-math></inline-formula> bipolar switchings, the stable field-free SOT switching can still be achieved, and the EB field remains at 3.25 mT, showing a robust EB and reliable SOT switching performance. The introduction of the voltage-controlled magnetic anisotropy effect results in a 35% reduction in power consumption. Furthermore, the voltage-gated SOT devices achieve a low write error rate below <inline-formula> <tex-math>$5\\times 10^{-5}$ </tex-math></inline-formula> and a high endurance over <inline-formula> <tex-math>$1\\times 10^{{11} }$ </tex-math></inline-formula> cycles. These findings highlight the potential of IrMn-based SOT-MRAM for advanced memory technology applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"745-748"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938570/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-orbit torque (SOT) magnetic random-access memory (MRAM) is a promising candidate for next-generation memory technologies due to its non-volatility, high speed, and low power consumption. In this letter, we experimentally demonstrate SOT switching in 80 nm IrMn-based perpendicular magnetic tunnel junctions with a pulse width down to 0.8 ns. Field-free SOT switching is achieved with the assistance of the in-plane exchange bias (EB) generated at the antiferromagnetic/ferromagnetic interface. Remarkably, after $1\times 10^{{10} }$ bipolar switchings, the stable field-free SOT switching can still be achieved, and the EB field remains at 3.25 mT, showing a robust EB and reliable SOT switching performance. The introduction of the voltage-controlled magnetic anisotropy effect results in a 35% reduction in power consumption. Furthermore, the voltage-gated SOT devices achieve a low write error rate below $5\times 10^{-5}$ and a high endurance over $1\times 10^{{11} }$ cycles. These findings highlight the potential of IrMn-based SOT-MRAM for advanced memory technology applications.
基于irmn的垂直磁隧道结鲁棒无场电压门控自旋轨道转矩开关
自旋轨道转矩(SOT)磁随机存取存储器(MRAM)由于其非易失性、高速度和低功耗等优点,是下一代存储技术的一个很有前途的候选者。在这封信中,我们实验证明了在80 nm irmn基垂直磁隧道结中SOT开关,脉冲宽度降至0.8 ns。利用在反铁磁/铁磁界面处产生的面内交换偏置(EB)实现无场SOT开关。值得注意的是,在$1\ × 10^{{10}}$双极开关后,仍然可以实现稳定的无场SOT开关,并且EB场保持在3.25 mT,显示出稳健的EB和可靠的SOT开关性能。电压控制磁各向异性效应的引入使功耗降低了35%。此外,电压门控SOT器件实现了低于$5\ × 10^{-5}$的低写入错误率和超过$1\ × 10^{{11}}$周期的高续航力。这些发现突出了基于irmn的SOT-MRAM在先进存储技术应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信