{"title":"Neuromorphic Device Based on Solution-Processed WSe2 Nanoflake Synaptic Transistors","authors":"Taoyu Zou;Chengpeng Jiang;Wentao Xu;Yong-Young Noh","doi":"10.1109/LED.2025.3554009","DOIUrl":null,"url":null,"abstract":"Significant progress has been made in developing artificial synapses using transition metal dichalcogenides (TMDs)-based neuromorphic devices, but solution-processable TMDs remain underexplored, especially in utilizing intrinsic defects for synaptic functions. Here, we prepared electrochemically-exfoliated WSe2 nanoflakes with Se vacancies that enable charge trapping and detrapping. Using a solution-processed approach, we fabricated a high-performance WSe2 synaptic transistor with a large memory window, a significant trap density of <inline-formula> <tex-math>$5\\times 10^{{12}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^{-{2}}$ </tex-math></inline-formula>, and high operating stability. This synaptic transistor also successfully mimics various synaptic behaviors such as potentiation and depression, spike-voltage-dependent plasticity, and spike-number-dependent plasticity. By integrating the device with an infrared ranging sensor, the neuromorphic sensory system achieves 94.7% accuracy in object classification task, demonstrating its potential for advanced sensory processing.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"765-768"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945659/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Significant progress has been made in developing artificial synapses using transition metal dichalcogenides (TMDs)-based neuromorphic devices, but solution-processable TMDs remain underexplored, especially in utilizing intrinsic defects for synaptic functions. Here, we prepared electrochemically-exfoliated WSe2 nanoflakes with Se vacancies that enable charge trapping and detrapping. Using a solution-processed approach, we fabricated a high-performance WSe2 synaptic transistor with a large memory window, a significant trap density of $5\times 10^{{12}}$ cm${}^{-{2}}$ , and high operating stability. This synaptic transistor also successfully mimics various synaptic behaviors such as potentiation and depression, spike-voltage-dependent plasticity, and spike-number-dependent plasticity. By integrating the device with an infrared ranging sensor, the neuromorphic sensory system achieves 94.7% accuracy in object classification task, demonstrating its potential for advanced sensory processing.
利用过渡金属二硫族化合物(TMDs)为基础的神经形态器件开发人工突触已经取得了重大进展,但溶液可加工的TMDs仍未得到充分开发,特别是在利用固有缺陷来实现突触功能方面。在这里,我们制备了具有Se空位的电化学剥离的WSe2纳米片,可以实现电荷捕获和脱除。采用溶液处理的方法,我们制造了高性能的WSe2突触晶体管,具有大的存储窗口,显著的陷阱密度为$5\ × 10^{{12}}$ cm ${}^{-{2}}$,并且具有高的工作稳定性。这种突触晶体管还成功地模拟了各种突触行为,如增强和抑制、峰值电压依赖的可塑性和峰值数量依赖的可塑性。通过将该装置与红外测距传感器集成,神经形态感觉系统在物体分类任务中的准确率达到94.7%,显示出其在高级感觉处理中的潜力。
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.