SnS₂/WSe₂ van der Waals Single-Detector Spectrometer With a Dynamically Selecting Spectral Reconstruction Strategy

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Zhou;Haoran Mu;Congwen Zhang;Renjing Xu;Guangyu Zhang;Shenghuang Lin
{"title":"SnS₂/WSe₂ van der Waals Single-Detector Spectrometer With a Dynamically Selecting Spectral Reconstruction Strategy","authors":"Yang Zhou;Haoran Mu;Congwen Zhang;Renjing Xu;Guangyu Zhang;Shenghuang Lin","doi":"10.1109/LED.2025.3545960","DOIUrl":null,"url":null,"abstract":"The single-detector spectrometers based on 2D layer van der Waals (vdW) heterojunctions offer advantages in spectral reconstruction due to their high sensitivity, tunable optical properties, and the ability to cover a broad spectral range. There exist two principal algorithms dominating spectrum reconstruction for this kind spectrometer: the Tikhonov regularization method combined with the Least Squares Method (LSM) and neural network-based approaches, particularly Deep Learning (DL). However, both of the algorithms exhibit inherent limitations in spectral reconstruction, which constrain the versatility of computational spectrometers that rely solely on a single algorithm for reconstructing diverse spectral profiles. To overcome this limitation, we introduce an artificial neural network (ANN)-based classification model capable of dynamically selecting the optimal algorithm throughout the reconstruction process. This enables highly accurate spectral reconstruction within the 440-700 nm wavelength range, achieving a spectral resolution of 6 nm. By harnessing the complementary strengths of multiple algorithms, our approach proposes a novel strategy for combining techniques to enhance the precision of spectral reconstructions, laying the groundwork for more sophisticated methods in the future.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"801-804"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10904467/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The single-detector spectrometers based on 2D layer van der Waals (vdW) heterojunctions offer advantages in spectral reconstruction due to their high sensitivity, tunable optical properties, and the ability to cover a broad spectral range. There exist two principal algorithms dominating spectrum reconstruction for this kind spectrometer: the Tikhonov regularization method combined with the Least Squares Method (LSM) and neural network-based approaches, particularly Deep Learning (DL). However, both of the algorithms exhibit inherent limitations in spectral reconstruction, which constrain the versatility of computational spectrometers that rely solely on a single algorithm for reconstructing diverse spectral profiles. To overcome this limitation, we introduce an artificial neural network (ANN)-based classification model capable of dynamically selecting the optimal algorithm throughout the reconstruction process. This enables highly accurate spectral reconstruction within the 440-700 nm wavelength range, achieving a spectral resolution of 6 nm. By harnessing the complementary strengths of multiple algorithms, our approach proposes a novel strategy for combining techniques to enhance the precision of spectral reconstructions, laying the groundwork for more sophisticated methods in the future.
基于动态选择光谱重建策略的SnS₂/WSe₂范德瓦尔斯单探测器光谱仪
基于二维层范德华(vdW)异质结的单探测器光谱仪由于其高灵敏度、可调谐的光学特性和覆盖宽光谱范围的能力,在光谱重建方面具有优势。目前,这类光谱仪的光谱重建主要有两种算法:结合最小二乘法(LSM)的Tikhonov正则化方法和基于神经网络的方法,特别是深度学习(DL)。然而,这两种算法在光谱重建中都表现出固有的局限性,这限制了计算光谱仪的多功能性,这些计算光谱仪仅依赖于单一算法来重建不同的光谱剖面。为了克服这一限制,我们引入了一种基于人工神经网络(ANN)的分类模型,该模型能够在整个重建过程中动态选择最优算法。这使得440-700 nm波长范围内的高精度光谱重建成为可能,达到6 nm的光谱分辨率。通过利用多种算法的互补优势,我们的方法提出了一种新的策略,结合技术来提高光谱重建的精度,为未来更复杂的方法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信