Convolutional Window-Inspired Similarity-Aware Computation-in-Memory for Energy Saving

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yong-Jun Jo;Chufeng Yang;Yuanjin Zheng;Tony Tae-Hyoung Kim
{"title":"Convolutional Window-Inspired Similarity-Aware Computation-in-Memory for Energy Saving","authors":"Yong-Jun Jo;Chufeng Yang;Yuanjin Zheng;Tony Tae-Hyoung Kim","doi":"10.1109/LSSC.2025.3560676","DOIUrl":null,"url":null,"abstract":"Various data-driven computation-in-memory (CIM) architectures have been proposed to reduce inference energy. However, most data-driven CIM architectures require specific conditions to achieve energy savings (e.g., zero skip requires a ReLU activation function). This letter proposes a convolutional window-inspired similarity-aware CIM that saves energy by predicting the current output based on the previous one, which is applicable in most cases where the neural network is based on convolution. In addition, this letter introduces a novel transposable architecture to enhance linearity and an analog-to-digital converter (ADC) for improved area efficiency. The prototype was fabricated with 65 nm process and achieved the highest SWaP FoM as 19.04 TOPS/W<inline-formula> <tex-math>$\\times $ </tex-math></inline-formula>Mb/mm2 among the state-of-the-art transposable CIMs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"121-124"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10965778/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Various data-driven computation-in-memory (CIM) architectures have been proposed to reduce inference energy. However, most data-driven CIM architectures require specific conditions to achieve energy savings (e.g., zero skip requires a ReLU activation function). This letter proposes a convolutional window-inspired similarity-aware CIM that saves energy by predicting the current output based on the previous one, which is applicable in most cases where the neural network is based on convolution. In addition, this letter introduces a novel transposable architecture to enhance linearity and an analog-to-digital converter (ADC) for improved area efficiency. The prototype was fabricated with 65 nm process and achieved the highest SWaP FoM as 19.04 TOPS/W $\times $ Mb/mm2 among the state-of-the-art transposable CIMs.
基于卷积窗口的内存相似性感知计算节能技术
为了减少推理能量,人们提出了各种数据驱动的内存计算(CIM)体系结构。然而,大多数数据驱动的CIM体系结构需要特定的条件来实现节能(例如,零跳过需要ReLU激活功能)。这封信提出了一个卷积窗口启发的相似性感知CIM,通过基于前一个预测当前输出来节省能量,这适用于大多数基于卷积的神经网络。此外,本文还介绍了一种新的可转座架构,以提高线性度,并介绍了一种模数转换器(ADC),以提高面积效率。该原型机采用65纳米工艺制造,在最先进的转座式cim中实现了最高的SWaP FoM,为19.04 TOPS/W $\times $ Mb/mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信