Ultraviolet Induced Effects on Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors With Relatively Short Channel Lengths

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Po-Hsun Chen;Kuan-Ju Zhou;Cheng-Hsien Lin
{"title":"Ultraviolet Induced Effects on Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors With Relatively Short Channel Lengths","authors":"Po-Hsun Chen;Kuan-Ju Zhou;Cheng-Hsien Lin","doi":"10.1109/LED.2025.3553940","DOIUrl":null,"url":null,"abstract":"This study reports the ultraviolet (UV) light induced effects on the thin film transistor (TFT) based on the amorphous indium-gallium-tin-oxide (IGZO) material with the double gate structure. Under UV light exposure, the n-type TFT device with the relatively short channel (<inline-formula> <tex-math>$4\\mu $ </tex-math></inline-formula>m) can exhibit good response, compared to those with the relatively long channel according to the electrical measurements. In addition, continuous sweeping cycles up to 1000 cycles with and without UV light source suggest its robust endurance characteristics without obvious degradations. Then, constant dynamic light switching cycles up to 2000 cycles are tested and also verified with different light sources. To further examine the UV induced effects, various electrical operations and light intensities are carried out. The experimental results indicate that the device with a relatively short channel exhibits excellent UV light responsiveness and high reliability when exposed to a selective light source, demonstrating its potential for UV sensor or light-switching applications compared to conventional UV sensing devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"777-780"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946246/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the ultraviolet (UV) light induced effects on the thin film transistor (TFT) based on the amorphous indium-gallium-tin-oxide (IGZO) material with the double gate structure. Under UV light exposure, the n-type TFT device with the relatively short channel ( $4\mu $ m) can exhibit good response, compared to those with the relatively long channel according to the electrical measurements. In addition, continuous sweeping cycles up to 1000 cycles with and without UV light source suggest its robust endurance characteristics without obvious degradations. Then, constant dynamic light switching cycles up to 2000 cycles are tested and also verified with different light sources. To further examine the UV induced effects, various electrical operations and light intensities are carried out. The experimental results indicate that the device with a relatively short channel exhibits excellent UV light responsiveness and high reliability when exposed to a selective light source, demonstrating its potential for UV sensor or light-switching applications compared to conventional UV sensing devices.
紫外光对非晶铟镓锌氧化物薄膜晶体管的诱导效应
本文报道了紫外光对双栅结构非晶氧化铟镓锡(IGZO)材料薄膜晶体管(TFT)的诱导效应。在紫外光照射下,与具有相对较长通道的器件相比,具有相对较短通道($4\mu $ m)的n型TFT器件可以表现出良好的响应。此外,在有和无UV光源的情况下,连续扫描次数可达1000次,表明其耐用性强,无明显退化。然后,测试了2000个周期的恒定动态光开关周期,并在不同的光源下进行了验证。为了进一步研究紫外线的诱导效应,我们进行了不同的电操作和光强度。实验结果表明,当暴露在选择性光源下时,具有相对短通道的器件表现出出色的紫外光响应性和高可靠性,与传统的紫外光传感器件相比,显示了其在紫外光传感器或光开关应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信