Phase changes of the flow rate in the vertebral artery caused by debranching thoracic endovascular aortic repair: Effects of flow path and local vessel stiffness on vertebral arterial pulsation
{"title":"Phase changes of the flow rate in the vertebral artery caused by debranching thoracic endovascular aortic repair: Effects of flow path and local vessel stiffness on vertebral arterial pulsation","authors":"Naoki Takeishi , Li Jialong , Naoto Yokoyama , Takasumi Goto , Hisashi Tanaka , Shigeru Miyagawa , Shigeo Wada","doi":"10.1016/j.medengphy.2025.104348","DOIUrl":null,"url":null,"abstract":"<div><div>Despite numerous studies on cerebral arterial blood flow, there has not yet been a comprehensive description of hemodynamics in patients undergoing debranching thoracic endovascular aortic repair (dTEVAR), a promising surgical option for aortic arch aneurysms. A phase delay of the flow rate in the left vertebral artery (LVA) in patients after dTEVAR compared to those before was experimentally observed, while the phase in the right vertebral artery (RVA) remained almost the same before and after surgery. Since this surgical intervention included stent graft implantation and extra-anatomical bypass, it was expected that the intracranial hemodynamic changes due to dTEVAR were coupled with fluid flow and pulse waves in cerebral arteries. To clarify this issue, a one-dimensional model (1D) was used to numerically investigate the relative contribution (i.e., local vessel stiffness and flow path changes) of the VA flow rate to the phase difference. The numerical results demonstrated a phase delay of flow rate in the LVA but not the RVA in postoperative patients undergoing dTEVAR relative to preoperative patients. The results further showed that the primary factor affecting the phase delay of the flow rate in the LVA after surgery compared to that before was the bypass, i.e., alteration of flow path, rather than stent grafting, i.e., the change in local vessel stiffness. The numerical results provide insights into hemodynamics in postoperative patients undergoing dTEVAR, as well as knowledge about therapeutic decisions.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"140 ","pages":"Article 104348"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000670","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite numerous studies on cerebral arterial blood flow, there has not yet been a comprehensive description of hemodynamics in patients undergoing debranching thoracic endovascular aortic repair (dTEVAR), a promising surgical option for aortic arch aneurysms. A phase delay of the flow rate in the left vertebral artery (LVA) in patients after dTEVAR compared to those before was experimentally observed, while the phase in the right vertebral artery (RVA) remained almost the same before and after surgery. Since this surgical intervention included stent graft implantation and extra-anatomical bypass, it was expected that the intracranial hemodynamic changes due to dTEVAR were coupled with fluid flow and pulse waves in cerebral arteries. To clarify this issue, a one-dimensional model (1D) was used to numerically investigate the relative contribution (i.e., local vessel stiffness and flow path changes) of the VA flow rate to the phase difference. The numerical results demonstrated a phase delay of flow rate in the LVA but not the RVA in postoperative patients undergoing dTEVAR relative to preoperative patients. The results further showed that the primary factor affecting the phase delay of the flow rate in the LVA after surgery compared to that before was the bypass, i.e., alteration of flow path, rather than stent grafting, i.e., the change in local vessel stiffness. The numerical results provide insights into hemodynamics in postoperative patients undergoing dTEVAR, as well as knowledge about therapeutic decisions.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.