On the Enhanced p-Type Performance of Back-Gated WS2 Devices

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Carlos Marquez, Farzan Gity, Jose C. Galdon, Alberto Martinez, Norberto Salazar, Lida Ansari, Hazel Neill, Luca Donetti, Francisco Lorenzo, Manuel Caño-Garcia, Ruben Ortega, Carlos Navarro, Carlos Sampedro, Paul K. Hurley, Francisco Gamiz
{"title":"On the Enhanced p-Type Performance of Back-Gated WS2 Devices","authors":"Carlos Marquez, Farzan Gity, Jose C. Galdon, Alberto Martinez, Norberto Salazar, Lida Ansari, Hazel Neill, Luca Donetti, Francisco Lorenzo, Manuel Caño-Garcia, Ruben Ortega, Carlos Navarro, Carlos Sampedro, Paul K. Hurley, Francisco Gamiz","doi":"10.1002/aelm.202500079","DOIUrl":null,"url":null,"abstract":"In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS<sub>2</sub>) utilized in back-gated field-effect transistors (FETs), demonstrating robust and persistent p-type behavior across diverse conditions. Notably, this p-type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high-vacuum and high-temperature annealing. Electrical characterization reveals negligible Fermi-level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well-defined thermionic transport regime. The devices exhibit field-effect mobilities with a clear back-gate dependence, reaching values up to 0.1 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>. Temperature-dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First-principles simulations corroborate that the persistent p-type behavior could be driven by the presence of tungsten vacancies or WO<sub>3</sub> oxide species. This study highlights the potential of WS<sub>2</sub> for scalable integration into advanced p-type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"274 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500079","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back-gated field-effect transistors (FETs), demonstrating robust and persistent p-type behavior across diverse conditions. Notably, this p-type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high-vacuum and high-temperature annealing. Electrical characterization reveals negligible Fermi-level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well-defined thermionic transport regime. The devices exhibit field-effect mobilities with a clear back-gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature-dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First-principles simulations corroborate that the persistent p-type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p-type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties.

Abstract Image

后门控WS2器件p型性能增强研究
在这项工作中,提出了一种可扩展的技术,用于二硫化钨(WS2)的直接生长,用于背控场效应晶体管(fet),在不同条件下表现出稳健和持久的p型行为。值得注意的是,无论金属接触、半导体厚度或环境条件如何,这种p型行为都是一致的,即使在高真空和高温退火后也保持稳定。电学表征表明,在导带边缘的费米能级钉钉可以忽略不计,在180 mV以下的空穴载流子具有最小的肖特基势垒高度,并且具有明确的热离子输运机制。器件表现出场效应迁移率,具有明显的后门依赖性,达到0.1 cm2V−1s−1。温度相关输运分析表明,载流子迁移率主要受杂质散射和库仑相互作用的限制。第一性原理模拟证实了持续的p型行为可能是由钨空位或WO3氧化物的存在驱动的。这项研究强调了WS2可扩展集成到先进p型电子器件中的潜力,并为控制其电荷传输特性的内在机制提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信