Design, Fabrication, Modeling and Characterization of a Polyimide-Based Membrane for High Strain Studies in Microfabricated Devices

Loïc Lahaye;Nicolas Roisin;Nicolas André;Denis Flandre;Jean-Pierre Raskin
{"title":"Design, Fabrication, Modeling and Characterization of a Polyimide-Based Membrane for High Strain Studies in Microfabricated Devices","authors":"Loïc Lahaye;Nicolas Roisin;Nicolas André;Denis Flandre;Jean-Pierre Raskin","doi":"10.1109/TMAT.2025.3557763","DOIUrl":null,"url":null,"abstract":"This paper reports the design, integration, modeling and characterization of single crystalline (c-Si) resistors on a 3.6 μm-thick and 2.7 mm-diameter polyimide MEMS membrane. We propose a straightforward <italic>top-down</i> fabrication scheme to integrate any microfabricated devices onto a flexible membrane. A <italic>bulge-test</i> setup is assembled to measure the deflection of the membrane under a white light interferometer. In addition, a finite elements method (FEM) model is introduced to predict the behavior of the membrane under increasing pressure up to 80 kPa. The parameters of the FEM simulation are tuned with the deflection results to extract the strain tensor, showing a maximal biaxial strain of 0.37% at 80 kPa in the 300 nm-thick c-Si devices. Raman spectroscopy is finally employed to confirm the FEM results by comparing the estimated Raman peak-shift with actual Raman measurements. The shift predicted using phonon-deformation potential (PDP) theory shows excellent agreement with the experimental validation, giving confidence in the FEM model.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"26-33"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Materials for Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10948909/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports the design, integration, modeling and characterization of single crystalline (c-Si) resistors on a 3.6 μm-thick and 2.7 mm-diameter polyimide MEMS membrane. We propose a straightforward top-down fabrication scheme to integrate any microfabricated devices onto a flexible membrane. A bulge-test setup is assembled to measure the deflection of the membrane under a white light interferometer. In addition, a finite elements method (FEM) model is introduced to predict the behavior of the membrane under increasing pressure up to 80 kPa. The parameters of the FEM simulation are tuned with the deflection results to extract the strain tensor, showing a maximal biaxial strain of 0.37% at 80 kPa in the 300 nm-thick c-Si devices. Raman spectroscopy is finally employed to confirm the FEM results by comparing the estimated Raman peak-shift with actual Raman measurements. The shift predicted using phonon-deformation potential (PDP) theory shows excellent agreement with the experimental validation, giving confidence in the FEM model.
用于微加工器件高应变研究的聚酰亚胺基膜的设计、制造、建模和表征
本文报道了在厚3.6 μm、直径2.7 mm的聚酰亚胺MEMS薄膜上设计、集成、建模和表征单晶(c-Si)电阻。我们提出了一种直接的自上而下的制造方案,将任何微制造器件集成到柔性膜上。在白光干涉仪下,组装了一个膨胀测试装置来测量薄膜的偏转。此外,还引入了有限元法模型,对膜在80kpa压力下的性能进行了预测。将有限元模拟参数与挠度结果进行调整,提取应变张量,结果表明,300 nm厚c-Si器件在80 kPa时的最大双轴应变为0.37%。最后利用拉曼光谱对有限元计算结果进行了验证,将估算的拉曼峰移与实际拉曼测量值进行了比较。声子变形势(PDP)理论预测的位移与实验验证结果吻合良好,为有限元模型提供了信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信