Yi-Ting Shen , Zi-Xu Zhang , Xin Qi , Hong-Xuan Wu , Yan-Cheng Lin , Wang Ma , Guang Yang , Xiao-Man Sun
{"title":"Harnessing microalgae: Pioneering strategies for cost-effective EPA synthesis","authors":"Yi-Ting Shen , Zi-Xu Zhang , Xin Qi , Hong-Xuan Wu , Yan-Cheng Lin , Wang Ma , Guang Yang , Xiao-Man Sun","doi":"10.1016/j.fbio.2025.106687","DOIUrl":null,"url":null,"abstract":"<div><div>Eicosapentaenoic acid (EPA), an essential omega-3 polyunsaturated fatty acid, can promote human health, including cardiovascular protection and anti-inflammatory effects. Traditional EPA sources, such as fish oil, face challenges including overfishing, environmental contamination, and ethical concerns. Microalgae, as the primary producers of EPA in marine ecosystems, offer a sustainable and scalable alternative. However, microalgae-based EPA production faces challenges such as high costs and low efficiency. This review explores innovative strategies to reduce costs and improve production efficiency in microalgae-based EPA production, highlighting strategies to significantly enhance EPA yields through screening of high-yielding strains, biotechnology strategies, fermentation innovations, and downstream processing. Emerging technologies like CRISPR-Cas9 enable precise genetic modifications, while artificial intelligence (AI) accelerates enzyme optimization and predictive modeling of cultivation parameters. Multi-omics integration provides insights into genotype-phenotype relationships, guiding strain design. Automation and real-time monitoring driven by internet-of-things enhance scalability and reduce operational costs. The comprehensive utilization of microalgae by-products is also emphasized, enhancing economic efficiency and sustainability. The integration of advanced biotechnological and engineering tools promises to revolutionize EPA production.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"68 ","pages":"Article 106687"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioscience","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212429225008636","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eicosapentaenoic acid (EPA), an essential omega-3 polyunsaturated fatty acid, can promote human health, including cardiovascular protection and anti-inflammatory effects. Traditional EPA sources, such as fish oil, face challenges including overfishing, environmental contamination, and ethical concerns. Microalgae, as the primary producers of EPA in marine ecosystems, offer a sustainable and scalable alternative. However, microalgae-based EPA production faces challenges such as high costs and low efficiency. This review explores innovative strategies to reduce costs and improve production efficiency in microalgae-based EPA production, highlighting strategies to significantly enhance EPA yields through screening of high-yielding strains, biotechnology strategies, fermentation innovations, and downstream processing. Emerging technologies like CRISPR-Cas9 enable precise genetic modifications, while artificial intelligence (AI) accelerates enzyme optimization and predictive modeling of cultivation parameters. Multi-omics integration provides insights into genotype-phenotype relationships, guiding strain design. Automation and real-time monitoring driven by internet-of-things enhance scalability and reduce operational costs. The comprehensive utilization of microalgae by-products is also emphasized, enhancing economic efficiency and sustainability. The integration of advanced biotechnological and engineering tools promises to revolutionize EPA production.
Food BioscienceBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.40
自引率
5.80%
发文量
671
审稿时长
27 days
期刊介绍:
Food Bioscience is a peer-reviewed journal that aims to provide a forum for recent developments in the field of bio-related food research. The journal focuses on both fundamental and applied research worldwide, with special attention to ethnic and cultural aspects of food bioresearch.