Thermal Control of Vortex Motion in Nanoscale Superconductors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Björn Niedzielski, Jamal Berakdar
{"title":"Thermal Control of Vortex Motion in Nanoscale Superconductors","authors":"Björn Niedzielski, Jamal Berakdar","doi":"10.1002/aelm.202400946","DOIUrl":null,"url":null,"abstract":"Thermally induced motion of vortices in nanoscale superconductors (SCs) is investigated. Using numerical and analytical methods it is shown how local heating can be mapped onto an effective driving scalar potential resembling the action of a static electric field. In particular, for a local hot spot in a micron-size SC sample, a mutual attraction is found between the vortex and the hot spot that traces back to an interaction between the superconducting condensate and the superfluid velocity. It is shown that this interaction acts as an electric field resulting in a quasi Lorentz-force on the vortex. The field dependence on the material parameters of the SC as well as on pining centers is studied. It is concluded that a large magnetic penetration depth goes along with a large superfluid velocity making the vortex-hot spot attractive force stronger and leading to a mutual amplification of field and velocity. The results and analysis point to an interesting way to simulate electric field effects via local heating.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"35 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400946","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermally induced motion of vortices in nanoscale superconductors (SCs) is investigated. Using numerical and analytical methods it is shown how local heating can be mapped onto an effective driving scalar potential resembling the action of a static electric field. In particular, for a local hot spot in a micron-size SC sample, a mutual attraction is found between the vortex and the hot spot that traces back to an interaction between the superconducting condensate and the superfluid velocity. It is shown that this interaction acts as an electric field resulting in a quasi Lorentz-force on the vortex. The field dependence on the material parameters of the SC as well as on pining centers is studied. It is concluded that a large magnetic penetration depth goes along with a large superfluid velocity making the vortex-hot spot attractive force stronger and leading to a mutual amplification of field and velocity. The results and analysis point to an interesting way to simulate electric field effects via local heating.

Abstract Image

纳米超导体涡旋运动的热控制
研究了纳米超导体中热诱导的涡旋运动。利用数值和分析方法,它显示了如何局部加热可以映射到一个有效的驱动标量势类似于静电场的作用。特别地,对于微米大小的SC样品中的局部热点,在涡旋和热点之间发现了相互吸引,这可以追溯到超导冷凝物和超流体速度之间的相互作用。结果表明,这种相互作用就像一个电场,在涡旋上产生一个准洛伦兹力。研究了场对材料参数和缩紧中心的依赖关系。结果表明,磁穿透深度越大,超流体速度越快,涡流热点引力越强,磁场和速度相互放大。结果和分析指出了一种通过局部加热来模拟电场效应的有趣方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信