{"title":"A MOS-Based Temperature Sensor With Energy-Efficient Techniques","authors":"Jooeun Kim;Jeongmyeong Kim;Minkyu Yang;Kyounghun Kang;Wanyeong Jung","doi":"10.1109/LSSC.2025.3559900","DOIUrl":null,"url":null,"abstract":"This letter presents an energy-efficient MOS-based temperature sensor, enhanced through transducer and readout circuit integrated design, LSB-first SAR, and energy-efficient comparator. The transducer and readout circuit integrated design reduces noise by combining two blocks into one. With temperature-dependent offset voltage, the comparator integrates with the LSB-first SAR and is optimized for energy efficiency. The LSB-first SAR reduces the number of cycles and energy consumption. In addition, an asynchronous clock controls the circuit, eliminating the need for a timing reference and adjusting speed to temperature to increase measurement robustness. The temperature sensor was fabricated with a 65 nm CMOS process, and the sensor has −60 to <inline-formula> <tex-math>$145~^{\\circ }$ </tex-math></inline-formula>C measurement range. After two-point calibration with a second-order polynomial, errors are −1.93/<inline-formula> <tex-math>${+} 1.44~^{\\circ }$ </tex-math></inline-formula>C over the entire range and −0.96/<inline-formula> <tex-math>${+} 0.94~^{\\circ }$ </tex-math></inline-formula>C from −43 to <inline-formula> <tex-math>$137~^{\\circ }$ </tex-math></inline-formula>C. At room temperature, the sensor achieves 71.8 mK resolution and 41.9 pJ per conversion, resulting in the best resolution figure-of-merit of 216 fJ<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>K2 among MOS-based sensors.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"109-112"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963847/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents an energy-efficient MOS-based temperature sensor, enhanced through transducer and readout circuit integrated design, LSB-first SAR, and energy-efficient comparator. The transducer and readout circuit integrated design reduces noise by combining two blocks into one. With temperature-dependent offset voltage, the comparator integrates with the LSB-first SAR and is optimized for energy efficiency. The LSB-first SAR reduces the number of cycles and energy consumption. In addition, an asynchronous clock controls the circuit, eliminating the need for a timing reference and adjusting speed to temperature to increase measurement robustness. The temperature sensor was fabricated with a 65 nm CMOS process, and the sensor has −60 to $145~^{\circ }$ C measurement range. After two-point calibration with a second-order polynomial, errors are −1.93/${+} 1.44~^{\circ }$ C over the entire range and −0.96/${+} 0.94~^{\circ }$ C from −43 to $137~^{\circ }$ C. At room temperature, the sensor achieves 71.8 mK resolution and 41.9 pJ per conversion, resulting in the best resolution figure-of-merit of 216 fJ$\cdot $ K2 among MOS-based sensors.