{"title":"Counting core sets in matrix rings over finite fields","authors":"Roswitha Rissner , Nicholas J. Werner","doi":"10.1016/j.laa.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a commutative ring and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> be the ring of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices with entries from <em>R</em>. For each <span><math><mi>S</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, we consider its (generalized) null ideal <span><math><mi>N</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, which is the set of all polynomials <em>f</em> with coefficients from <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> with the property that <span><math><mi>f</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>S</mi></math></span>. The set <em>S</em> is said to be core if <span><math><mi>N</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is a two-sided ideal of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. It is not known how common core sets are among all subsets of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. We study this problem for <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is the finite field with <em>q</em> elements. We provide exact counts for the number of core subsets of each similarity class of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>. While not every subset of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is core, we prove that as <span><math><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>, the probability that a subset of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is core approaches 1. Thus, asymptotically in <em>q</em>, almost all subsets of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> are core.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 1-25"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001569","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a commutative ring and be the ring of matrices with entries from R. For each , we consider its (generalized) null ideal , which is the set of all polynomials f with coefficients from with the property that for all . The set S is said to be core if is a two-sided ideal of . It is not known how common core sets are among all subsets of . We study this problem for matrices over , where is the finite field with q elements. We provide exact counts for the number of core subsets of each similarity class of . While not every subset of is core, we prove that as , the probability that a subset of is core approaches 1. Thus, asymptotically in q, almost all subsets of are core.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.